858 research outputs found

    Berry-phase description of Topological Crystalline Insulators

    Full text link
    We study a class of translational-invariant insulators with discrete rotational symmetry. These insulators have no spin-orbit coupling, and in some cases have no time-reversal symmetry as well, i.e., the relevant symmetries are purely crystalline. Nevertheless, topological phases exist which are distinguished by their robust surface modes. Like many well-known topological phases, their band topology is unveiled by the crystalline analog of Berry phases, i.e., parallel transport across certain non-contractible loops in the Brillouin zone. We also identify certain topological phases without any robust surface modes -- they are uniquely distinguished by parallel transport along bent loops, whose shapes are determined by the symmetry group. Our findings have experimental implications in cold-atom systems, where the crystalline Berry phase has been directly measured.Comment: Latest version is accepted to PR

    Extracting Excitations From Model State Entanglement

    Full text link
    We extend the concept of entanglement spectrum from the geometrical to the particle bipartite partition. We apply this to several Fractional Quantum Hall (FQH) wavefunctions on both sphere and torus geometries to show that this new type of entanglement spectra completely reveals the physics of bulk quasihole excitations. While this is easily understood when a local Hamiltonian for the model state exists, we show that the quasiholes wavefunctions are encoded within the model state even when such a Hamiltonian is not known. As a nontrivial example, we look at Jain's composite fermion states and obtain their quasiholes directly from the model state wavefunction. We reach similar conclusions for wavefunctions described by Jack polynomials.Comment: 5 pages, 7 figures, updated versio

    Holonomic Quantum Computing Based on the Stark Effect

    Full text link
    We propose a spin manipulation technique based entirely on electric fields applied to acceptor states in pp-type semiconductors with spin-orbit coupling. While interesting in its own right, the technique can also be used to implement fault-resilient holonomic quantum computing. We explicitly compute adiabatic transformation matrix (holonomy) of the degenerate states and comment on the feasibility of the scheme as an experimental technique.Comment: 5 page

    Correlation Lengths and Topological Entanglement Entropies of Unitary and Non-Unitary Fractional Quantum Hall Wavefunctions

    Full text link
    Using the newly developed Matrix Product State (MPS) formalism for non-abelian Fractional Quantum Hall (FQH) states, we address the question of whether a FQH trial wave function written as a correlation function in a non-unitary Conformal Field Theory (CFT) can describe the bulk of a gapped FQH phase. We show that the non-unitary Gaffnian state exhibits clear signatures of a pathological behavior. As a benchmark we compute the correlation length of Moore-Read state and find it to be finite in the thermodynamic limit. By contrast, the Gaffnian state has infinite correlation length in (at least) the non-Abelian sector, and is therefore gapless. We also compute the topological entanglement entropy of several non-abelian states with and without quasiholes. For the first time in FQH the results are in excellent agreement in all topological sectors with the CFT prediction for unitary states. For the non-unitary Gaffnian state in finite size systems, the topological entanglement entropy seems to behave like that of the Composite Fermion Jain state at equal filling.Comment: 5 pages, 5 figures, and supplementary material. Published versio

    Wilson-Loop Characterization of Inversion-Symmetric Topological Insulators

    Full text link
    The ground state of translationally-invariant insulators comprise bands which can assume topologically distinct structures. There are few known examples where this distinction is enforced by a point-group symmetry alone. In this paper we show that 1D and 2D insulators with the simplest point-group symmetry - inversion - have a Z≥Z^{\geq} classification. In 2D, we identify a relative winding number that is solely protected by inversion symmetry. By analysis of Berry phases, we show that this invariant has similarities with the first Chern class (of time-reversal breaking insulators), but is more closely analogous to the Z2Z_2 invariant (of time-reversal invariant insulators). Implications of our work are discussed in holonomy, the geometric-phase theory of polarization, the theory of maximally-localized Wannier functions, and in the entanglement spectrum.Comment: The updated version is accepted in Physical Review

    D-Algebra Structure of Topological Insulators

    Full text link
    In the quantum Hall effect, the density operators at different wave-vectors generally do not commute and give rise to the Girvin MacDonald Plazmann (GMP) algebra with important consequences such as ground-state center of mass degeneracy at fractional filling fraction, and W_{1 + \infty} symmetry of the filled Landau levels. We show that the natural generalization of the GMP algebra to higher dimensional topological insulators involves the concept of a D-algebra formed by using the fully anti-symmetric tensor in D-dimensions. For insulators in even dimensional space, the D-algebra is isotropic and closes for the case of constant non-Abelian F(k) ^ F(k) ... ^ F(k) connection (D-Berry curvature), and its structure factors are proportional to the D/2-Chern number. In odd dimensions, the algebra is not isotropic, contains the weak topological insulator index (layers of the topological insulator in one less dimension) and does not contain the Chern-Simons \theta form (F ^ A - 2/3 A ^ A ^ A in 3 dimensions). The Chern-Simons form appears in a certain combination of the parallel transport and simple translation operator which is not an algebra. The possible relation to D-dimensional volume preserving diffeomorphisms and parallel transport of extended objects is also discussed.Comment: 5 page

    Bulk-Edge Correspondence in the Entanglement Spectra

    Full text link
    Li and Haldane conjectured and numerically substantiated that the entanglement spectrum of the reduced density matrix of ground-states of time-reversal breaking topological phases (fractional quantum Hall states) contains information about the counting of their edge modes when the ground-state is cut in two spatially distinct regions and one of the regions is traced out. We analytically substantiate this conjecture for a series of FQH states defined as unique zero modes of pseudopotential Hamiltonians by finding a one to one map between the thermodynamic limit counting of two different entanglement spectra: the particle entanglement spectrum, whose counting of eigenvalues for each good quantum number is identical (up to accidental degeneracies) to the counting of bulk quasiholes, and the orbital entanglement spectrum (the Li-Haldane spectrum). As the particle entanglement spectrum is related to bulk quasihole physics and the orbital entanglement spectrum is related to edge physics, our map can be thought of as a mathematically sound microscopic description of bulk-edge correspondence in entanglement spectra. By using a set of clustering operators which have their origin in conformal field theory (CFT) operator expansions, we show that the counting of the orbital entanglement spectrum eigenvalues in the thermodynamic limit must be identical to the counting of quasiholes in the bulk. The latter equals the counting of edge modes at a hard-wall boundary placed on the sample. Moreover, we show this to be true even for CFT states which are likely bulk gapless, such as the Gaffnian wavefunction.Comment: 20 pages, 6 figure
    • …
    corecore