31,117 research outputs found

    Fractional Calculus as a Macroscopic Manifestation of Randomness

    Full text link
    We generalize the method of Van Hove so as to deal with the case of non-ordinary statistical mechanics, that being phenomena with no time-scale separation. We show that in the case of ordinary statistical mechanics, even if the adoption of the Van Hove method imposes randomness upon Hamiltonian dynamics, the resulting statistical process is described using normal calculus techniques. On the other hand, in the case where there is no time-scale separation, this generalized version of Van Hove's method not only imposes randomness upon the microscopic dynamics, but it also transmits randomness to the macroscopic level. As a result, the correct description of macroscopic dynamics has to be expressed in terms of the fractional calculus.Comment: 20 pages, 1 figur

    Mining Missing Hyperlinks from Human Navigation Traces: A Case Study of Wikipedia

    Full text link
    Hyperlinks are an essential feature of the World Wide Web. They are especially important for online encyclopedias such as Wikipedia: an article can often only be understood in the context of related articles, and hyperlinks make it easy to explore this context. But important links are often missing, and several methods have been proposed to alleviate this problem by learning a linking model based on the structure of the existing links. Here we propose a novel approach to identifying missing links in Wikipedia. We build on the fact that the ultimate purpose of Wikipedia links is to aid navigation. Rather than merely suggesting new links that are in tune with the structure of existing links, our method finds missing links that would immediately enhance Wikipedia's navigability. We leverage data sets of navigation paths collected through a Wikipedia-based human-computation game in which users must find a short path from a start to a target article by only clicking links encountered along the way. We harness human navigational traces to identify a set of candidates for missing links and then rank these candidates. Experiments show that our procedure identifies missing links of high quality

    E_11 and M Theory

    Full text link
    We argue that eleven dimensional supergravity can be described by a non-linear realisation based on the group E_{11}. This requires a formulation of eleven dimensional supergravity in which the gravitational degrees of freedom are described by two fields which are related by duality. We show the existence of such a description of gravity.Comment: 21 pages, some typos corrected and two references adde

    E11, generalised space-time and equations of motion in four dimensions

    Full text link
    We construct the non-linear realisation of the semi-direct product of E11 and its first fundamental representation at low levels in four dimensions. We include the fields for gravity, the scalars and the gauge fields as well as the duals of these fields. The generalised space-time, upon which the fields depend, consists of the usual coordinates of four dimensional space-time and Lorentz scalar coordinates which belong to the 56-dimensional representation of E7. We demand that the equations of motion are first order in derivatives of the generalised space-time and then show that they are essentially uniquely determined by the properties of the E11 Kac-Moody algebra and its first fundamental representation. The two lowest equations correctly describe the equations of motion of the scalars and the gauge fields once one takes the fields to depend only on the usual four dimensional space-time

    The leafage of a chordal graph

    Full text link
    The leafage l(G) of a chordal graph G is the minimum number of leaves of a tree in which G has an intersection representation by subtrees. We obtain upper and lower bounds on l(G) and compute it on special classes. The maximum of l(G) on n-vertex graphs is n - lg n - (1/2) lg lg n + O(1). The proper leafage l*(G) is the minimum number of leaves when no subtree may contain another; we obtain upper and lower bounds on l*(G). Leafage equals proper leafage on claw-free chordal graphs. We use asteroidal sets and structural properties of chordal graphs.Comment: 19 pages, 3 figure

    N=(0,2) Deformation of the N=(2,2) Wess-Zumino Model in Two Dimensions

    Full text link
    We construct a simple N=(0,2) deformation of the two-dimensional Wess-Zumino model. In addition to superpotential, it includes a "twisted" superpotential. Supersymmetry may or may not be spontaneously broken at the classical level. In the latter case an extra right-handed fermion field \zeta_R involved in the N=(0,2) deformation plays the role of Goldstino.Comment: 6 pages; v2: 3 references added; final version accepted for publication in PR

    Remarks on E11 approach

    Full text link
    We consider a few topics in E11E_{11} approach to superstring/M-theory: even subgroups (Z2Z_2 orbifolds) of EnE_{n}, n=11,10,9 and their connection to Kac-Moody algebras; EE11EE_{11} subgroup of E11E_{11} and coincidence of one of its weights with the l1l_1 weight of E11E_{11}, known to contain brane charges; possible form of supersymmetry relation in E11E_{11}; decomposition of l1l_1 w.r.t. the SO(10,10)SO(10,10) and its square root at first few levels; particle orbit of l1E11l_1 \ltimes E_{11}. Possible relevance of coadjoint orbits method is noticed, based on a self-duality form of equations of motion in E11E_{11}.Comment: Two references adde

    Beyond Ohba's Conjecture: A bound on the choice number of kk-chromatic graphs with nn vertices

    Get PDF
    Let ch(G)\text{ch}(G) denote the choice number of a graph GG (also called "list chromatic number" or "choosability" of GG). Noel, Reed, and Wu proved the conjecture of Ohba that ch(G)=χ(G)\text{ch}(G)=\chi(G) when V(G)2χ(G)+1|V(G)|\le 2\chi(G)+1. We extend this to a general upper bound: ch(G)max{χ(G),(V(G)+χ(G)1)/3}\text{ch}(G)\le \max\{\chi(G),\lceil({|V(G)|+\chi(G)-1})/{3}\rceil\}. Our result is sharp for V(G)3χ(G)|V(G)|\le 3\chi(G) using Ohba's examples, and it improves the best-known upper bound for ch(K4,,4)\text{ch}(K_{4,\dots,4}).Comment: 14 page

    The E_{11} origin of all maximal supergravities

    Full text link
    Starting from the eleven dimensional E_{11} non-linear realisation of M-theory we compute all possible forms, that is objects with totally antisymmetrised indices, that occur in four dimensions and above as well as all the 1-forms and 2-forms in three dimensions. In any dimension D, the D-1-forms lead to maximal supergravity theories with cosmological constants and they are in precise agreement with the patterns of gauging found in any dimension using supersymmetry. The D-forms correspond to the presence of space-filling branes which are crucial for the consistency of orientifold models and have not been derived from an alternative approach, with the exception of the 10-dimensional case. It follows that the gaugings of supergravities and the spacetime-filling branes possess an eleven dimensional origin within the E_{11} formulation of M-theory. This and previous results very strongly suggest that all the fields in the adjoint representation of E_{11} have a physical interpretation.Comment: 54 page
    corecore