81 research outputs found

    Possibilities of biotechnological methods in breeding of vegetable crops at the VIR Laboratory of Breeding and Cell Technologies

    Get PDF
    Basic and applied scientific research in plant cell technologies contribute to the successful development of agricultural plant breeding, which allows the creation of new forms of plants 2-4 times faster than by traditional breeding methods. To obtain inbred lines of most vegetable crops, about 5-7 cycles of self-pollination are required. As a result, the creation of a new cultivar/hybrid takes more than 10-12 years on an average. To successfully create a variety or hybrid, it is necessary to select parental pairs in the form of inbred lines. The VIR collection of vegetables and cucurbit crops includes 52,889 accessions, representatives of 29 families, 145 genera, and 610 species. The use of biotechnological methods is an important direction for accelerating the breeding of vegetable crops. Due to the relevance of introducing cell technologies into the breeding programs of the VIR Department of Genetic Resources of Vegetable and Cucurbit Crops, a Laboratory of Breeding and Cell Technologies was set up in 2022. The goal of the research to be performed at the new laboratory is to accelerate the creation of source material, cultivars and hybrids by combining traditional breeding methods and cell technologies. The objects of the study include cultivated forms and wild relatives of cabbage Brassica oleraceaΒ L., turnip Brassica rapaΒ L., lettuce LactucaΒ L., tomato LycopersiconΒ Mill and vegetable sweet corn Zea mays var. saccharataΒ Sturt. In the present review, we consider the main results of breeding cabbage, tomato, and lettuce which have been obtained through applying cell technologies. Despite the progress obtained, there are still several problems in this area. The lack of standardized, efficient and reproducible protocols for inΒ vitro methods often hinders their practical use. The tasks facing the laboratory in creating the initial breeding material and new cultivars and hybrids with the use of both conventional methods and cell technologies are relevant and correspond to the world level

    Π Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΠ΅ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Π±Π°Π·ΠΈΠ»ΠΈΠΊΠ° (Ocimum basilicum L.) ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ Π’Π˜Π  ΠΏΠΎ морфологичСским ΠΈ фСнологичСским ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ

    Get PDF
    Relevance. Basil is one of the most popular aromatic plants grown in the world. Various species and forms of Ocimum spp. differ in the nature of growth, color and aromatic composition. The VIR basil collection is represented by 452 accessions of six species from 55 countries. The expansion of the assortment of basil, as well as the identification of competitive adaptive cultivars with high economically valuable traits, determines the need to study and identify promising species and forms of Ocimum spp. The purpose of our work was to study accessions of basil (Ocimum basilicum) from the VIR collection by morphological and phenological traits and to identify accessions that have a complex of economically valuable traits for further use in the breeding.Materials and methods. The studies were carried out at the Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) at the VIR Pushkin and Pavlovsk Laboratories in 2019-2021 in open ground conditions. The material of the study was 66 accessions of the VIR basil collection of various agrobiological status and ecological and geographical origin. When analyzing the material, phenological observations, biometric measurements and morphological description of plants were carried out. These measurements were carried out in the phase of mass flowering.Results. As a result of the study, the degree of variability of the main phenological and morphological features was revealed. Accessions of basil were selected according to such traits as early maturity, plant height, weight of one plant and cold resistance, which can be used as starting material for breeding. The studied accessions are grouped into 7 varieties of two subspecies (subsp. basilicum and subsp. minimum): var. basilicum, var. glabratum, var. purpurescens, var. majus, var. diforme, var. minimum and var. chamaeleonicum, and their characteristics are given.Β ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. Π‘Π°Π·ΠΈΠ»ΠΈΠΊ являСтся ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· самых популярных Ρ‚Ρ€Π°Π², Π²Ρ‹Ρ€Π°Ρ‰ΠΈΠ²Π°Π΅ΠΌΡ‹Ρ… Π² ΠΌΠΈΡ€Π΅. Π Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π²ΠΈΠ΄Ρ‹ ΠΈ Ρ„ΠΎΡ€ΠΌΡ‹ Ocimum spp. Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ ΠΏΠΎ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Ρƒ роста, Ρ†Π²Π΅Ρ‚Ρƒ ΠΈ ароматичСскому составу. ΠšΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΡ Π±Π°Π·ΠΈΠ»ΠΈΠΊΠ° Π’Π˜Π  прСдставлСна 452 ΠΎΠ±Ρ€Π°Π·Ρ†Π°ΠΌΠΈ ΡˆΠ΅ΡΡ‚ΠΈ Π²ΠΈΠ΄ΠΎΠ² ΠΈΠ· 55 стран. Π Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ сортимСнта Π±Π°Π·ΠΈΠ»ΠΈΠΊΠ°, Π° Ρ‚Π°ΠΊΠΆΠ΅ выявлСниС конкурСнтоспособных Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½Ρ‹Ρ… сортов, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΡ… высокими хозяйствСнно Ρ†Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌΠΈ, опрСдСляСт Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ изучСния ΠΈ выдСлСния пСрспСктивных Π²ΠΈΠ΄ΠΎΠ² ΠΈ Ρ„ΠΎΡ€ΠΌ Ocimum spp. ЦСль нашСго исслСдования Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π»Π°ΡΡŒ Π² ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΎΡ†Π΅Π½ΠΊΠ΅ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Π±Π°Π·ΠΈΠ»ΠΈΠΊΠ° (Ocimum basilicum) ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ Π’Π˜Π  ΠΏΠΎ морфологичСским ΠΈ фСнологичСским ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΈ Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ², ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΡ… комплСксом хозяйствСнно-Ρ†Π΅Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² для дальнСйшСго использования Π² сСлСкционном процСссС ΠΏΡ€ΠΈ создании Π½ΠΎΠ²Ρ‹Ρ… пСрспСктивных сортов.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ИсслСдования ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² ЀГБНУ ЀИЦ Π’Π˜Π“Π Π  ΠΈΠΌ. Н.И. Π’Π°Π²ΠΈΠ»ΠΎΠ²Π° (Π’Π˜Π ) Π½Π° ΠΠŸΠ‘ Β«ΠŸΡƒΡˆΠΊΠΈΠ½ΡΠΊΠΈΠ΅ ΠΈ ПавловскиС Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ Π’Π˜Π Β» Π² 2019- 2021 Π³ΠΎΠ΄Π°Ρ… Π² условиях ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠ³ΠΎ Π³Ρ€ΡƒΠ½Ρ‚Π°. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» исслСдования – 66 ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ Π±Π°Π·ΠΈΠ»ΠΈΠΊΠ° Π’Π˜Π  Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ агробиологичСской принадлСТности ΠΈ эколого-гСографичСского происхоТдСния. ΠŸΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π²Π΅Π³Π΅Ρ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ фСнологичСскиС наблюдСния (посСв, всходы, Ρ†Π²Π΅Ρ‚Π΅Π½ΠΈΠ΅), морфологичСскоС описаниС растСний ΠΈ опрСдСляли биомСтричСскиС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ. Π”Π°Π½Π½Ρ‹Π΅ измСрСния ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² Ρ„Π°Π·Π΅ массового цвСтСния.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ исслСдования выявлСна ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ измСнчивости основных фСнологичСских ΠΈ морфологичСских ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ². Π’Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ Π±Π°Π·ΠΈΠ»ΠΈΠΊΠ° ΠΏΠΎ Ρ‚Π°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ, ΠΊΠ°ΠΊ ΡΠΊΠΎΡ€ΠΎΡΠΏΠ΅Π»ΠΎΡΡ‚ΡŒ, высота растСния, масса ΠΎΠ΄Π½ΠΎΠ³ΠΎ растСния ΠΈ Ρ…ΠΎΠ»ΠΎΠ΄ΠΎΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π² качСствС исходного ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° для сСлСкционной Ρ€Π°Π±ΠΎΡ‚Ρ‹. Π˜Π·ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ сгруппированы Π² 7 разновидностСй Π΄Π²ΡƒΡ… ΠΏΠΎΠ΄Π²ΠΈΠ΄ΠΎΠ² (subsp. basilicum ΠΈ subsp. minimum): var. basilicum, var. glabratum, var. purpurescens, var. majus, var. difforme, var. minimum ΠΈ var. chamaeleonicum, ΠΈ Π΄Π°Π½Π° ΠΈΡ… характСристика.

    Genetic diversity of VIR Raphanus sativus L. collections on aluminum tolerance

    Get PDF
    Radish and small radish (Raphanus sativus L.) are popular and widely cultivated root vegetables in the world, which occupy an important place in human nutrition. Edaphic stressors have a significant impact on their productivity and quality. The main factor determining the phytotoxicity of acidic soils is the increased concentration of mobile aluminum ions in the soil solution. The accumulation of aluminum in root tissues disrupts the processes of cell division, initiation and growth of the lateral roots, the supply of plants with minerals and water. The study of intraspecific variation in aluminum resistance of R. sativus is an important stage for the breeding of these crops. The purpose of this work was to study the genetic diversity of R. sativus crops including 109 accessions of small radish and radish of various ecological and geographical origin, belonging to 23 types, 14 varieties of European, Chinese and Japanese subspecies on aluminum tolerance. In the absence of a rapid assessment methodology specialized for the species studied, a method is used to assess the aluminum resistance of cereals using an eriochrome cyanine R dye, which is based on the recovery or absence of restoration of mitotic activity of the seedlings roots subjected to shock exposure to aluminum. The effect of various concentrations on the vital activity of plants was revealed: a 66-mM concentration of AlCl3 · 6Н2О had a weak toxic effect on R. sativus accessions slowing down root growth; 83 mM contributed to a large differentiation of the small radish accessions and to a lesser extent for radish; 99 mM inhibited further root growth in 13.0 % of small radish accessions and in 7.3 % of radish and had a highly damaging effect. AlCl3 · 6Н2О at a concentration of 99 mM allowed us to identify the most tolerant small radish and radish accessions that originate from countries with a wide distribution of acidic soils. In a result, it was possible to determine the intraspecific variability of small radish and radish plants in the early stages of vegetation and to identify genotypes that are contrasting in their resistance to aluminum. We recommend the AlCl3 · 6Н2О concentration of 83 mM for screening the aluminum resistance of small radish and 99 mM for radish. The modified method that we developed is proposed as a rapid diagnosis of aluminum tolerance for the screening of a wide range of R. sativus genotypes and a subsequent study of contrasting forms during a longer cultivation of plants in hydroponic culture (including elemental analysis of roots and shoots, contrasting in resistance of accessions) as well as reactions of plants in soil conditions

    On the issue of producing doubled haploids of table beet (<i>Beta vulgaris</i> L. var. <i>conditiva</i> Alef.) (a review)

    Get PDF
    Currently, hybrid table beet seeds make up a significant part of the seeds sold in the world due to their high synchrony, root uniformity, and the effect of heterosis. Heterosis breeding of table beet in Russia is developed insufficiently. One of the reasons is the lack of a well-studied homogeneous linear material. Another reason is a long and labor-consuming process of obtaining parent components for classical crossing due to a 2-year cycle of crop development, a pronounced self-incompatibility system, and inbreeding depression. In vitro production of doubled table beet haploids makes it possible to obtain homozygous material in a short time. It can be used in breeding programs as an alternative to traditional inbred lines. Therefore, introduction of the haploidization technology into the table beet breeding programs is of great importance. This article discusses various approaches to the production of doubled beet haploids and describes crucial achievements, major problems, and the ways to solve them. Methods for producing doubled haploids of table beet has not been studied profoundly enough, so they require additional in-depth research aimed at improving their efficiency and reproducibility

    EXPLORATION AND COLLECTING OF WILD <i> LACTUCA </i> L. SPECIES, VEGETABLE AND CUCURBIT CROP GENETIC RESOURCES IN PRIMORSKY AND KHABAROVSK REGIONS OF THE RUSSIAN FEDERATION IN 2017

    Get PDF
    A collecting mission was carried out over the territory of Primorsky and Khabarovsk Regions in 2017. The goal of this mission was searching for wild species of the genus Lactuca L., and collecting samples of those species. Also, collecting of vegetable crops and cucurbits as well as wild relatives of such crops was important. Finally, 453 wild samples belonging to 8 species of Lactuca L., were collected in their native habitats. In the explored area, Lactuca spp. were found growing almost everywhere, but each species had its own preferable ecotype. The dataset of all collecting spots of the gathered Lactuca species including geographical coordinates of each point was developed. Besides, 243 samples of vegetable crops and cucurbits were purchased at the local markets, and 94 samples of crops wild relatives were collected in wild nature

    Biochemical composition of tomato fruits of various colors

    Get PDF
    Tomato (Lycopersicon esculentum Mill.) is an economically important and widely cultivated vegetable crop that is consumed both fresh and processed. The nutritional value of tomato fruits is related to the content of carotenoids, polyphenols, sugars, organic acids, minerals and vitamins. Currently, there is a growing interest in the qualitative and quantitative increase in the content of health-promoting compounds in tomato fruits. VIR Lycopersicon (Tourn.) Mill. genetic resources collection includes 7678 accessions of one cultivated and nine wild species, which in turn provides ample opportunities for searching for information on the variability of the content of biologically active substances and searching for sources with a high content of them in the gene pool. Our work presents the results of the study of 70 accessions of cultivated and wild tomato on the main biochemical characteristics: the content of dry matter, ascorbic acid, sugars, carotenoids, chlorophylls and anthocyanins. As the basis for the selection of accessions for the study, accessions with various colors of fruits, including new accessions with varying content of anthocyanin, were taken. As a result of this study, the amplitude of variability in the content of dry matter (3.72–8.88 and 9.62–11.33 %), sugars (1.50–5.65 and 2.20–2.70 %), ascorbic acid (12.40–35.56 and 23.62– 28.14 mg/100 g), titratable acidity (0.14–0.46 and 0.33–0.48 %), chlorophylls (0.14–5.11 and 2.95–4.57 mg/100 g), carotenoids (0.97–99.86 and 1.03–10.06 mg/100 g) and anthocyanins (3.00–588.86 and 84.31–152.71 mg/100 g) in the fruits of cultivated and wild tomatoes, respectively, was determined. We have determined correlations between the content of dry matter and monosaccharides (r = 0.40, p ≀ 0.05), total sugars (r = 0.37, p ≀ 0.05) and ascorbic acid (r = 0.32, p ≀ 0.05); the content of ascorbic acid and carotenoids (r = 0.25, p ≀ 0.05). A high dependence of the content of chlorophyll a and b among themselves (r = 0.89, p ≀ 0.05), as well as between the content of chlorophyll b and anthocyanins (r = 0.47, p ≀ 0.05), the content of Ξ²-carotene (r = 0.26, p ≀ 0.05) and the content of monosaccharides (r = –0.29, p ≀ 0.05) has been noted. We have identif ied tomato accessions with a high content of individual chemical substances, as well as with a complex of traits that can be used as sources in breeding for a high content of dry matter, sugars, ascorbic acid, pigments and anthocyanins

    Mobilization of plant genetic resources from the territory of the Kabardino-Balkarian Republic

    Get PDF
    Background. The Kabardino-Balkarian Republic is one of the floristically unique territories in the Russian Federation. Its vegetation, especially in the mountainous and foothill areas, is very rich due to, inter alia, the extremely complex and diverse relief. Over 50% of the entire Caucasian flora is present in the republic, representing all main groups of plant formations, except subtropical and tropical ones. It seems relevant to search for and collect crop wild relatives as well as landraces of vegetables and cucurbits cultivated for a long time in the surveyed territory and adapted to local environmental conditions in order to add new genetic resources of these crops to the VIR collection.Methods. The expedition route included explorations of the foothill and highland areas of Kabardino-Balkaria, and familiarization with the seed assortment available at the markets and agricultural stores in Nalchik and Prokhladny. The target areas were surveyed from August 18 through 26, 2019, by one- or two-day trips starting from Nalchik. The length of the itinerary was about 600 km.Results. The collecting mission examined local farms and homesteads, explored the mountains, and collected 256 local and commercial cultivars of vegetable and cucurbit crops, 69 seed and vegetative samples of vegetable crop wild relatives, plus a number of fodder plant samples. Russian and foreign breeding companies whose cultivars are popular in Kabar dino-Balkaria were identified

    Π“Π•ΠΠ•Π’Π˜Π§Π•Π‘ΠšΠžΠ• Π ΠΠ—ΠΠžΠžΠ‘Π ΠΠ—Π˜Π• ΠšΠžΠ ΠΠ•ΠŸΠ›ΠžΠ”ΠΠ«Π₯ Π ΠΠ‘Π’Π•ΠΠ˜Π™ RAPHANUS SATIVUS L. (Π Π•Π”Π˜Π‘ И Π Π•Π”Π¬ΠšΠ) ΠšΠžΠ›Π›Π•ΠšΠ¦Π˜Π˜ Π’Π˜Π 

    Get PDF
    The study on the diversity of root plants in the species of Raphanus sativus L., which are available in the collection of VIR, enables to comprehensively evaluate the collection of small radish and radish, making descriptions of new forms and cultivar-types, and revealing the biological features of the formation of photosynthetic apparatus, yielding abilities, resistance to biotic and abiotic stressors. This article is the first part of a series of articles devoted to the study of the gene pool of root plants of the species R. sativus L. from the VIR collection. The experimental part of the article includes the results of a study of previously unexplored accessions from the radish collection, the following articles will be devoted to the radish gene pool. As a result of the research conducted in 2016-2017. 110 samples of radish of different eco-geographical origin and representing variety of cultivar type were studied. The studied radish samples were combined into several groups according to the duration of the growing season (early ripening, mid-ripening and late ripening). A longer vegetation period in radish in winter-time-growing was observed in case of insufficient illumination, but some accesions of the red oval-rounded cultivar type (k-2133, k-2343, k-1742, k-2404) have not shown any change in vegetation period. There was a strong change in the shape of the root crop when growing in winter under insufficient illumination. Samples that are capable to form a consumed organ in such conditions without changing the shape of the root crop and vegetation period were k-2404, Netherlands, k-2133, Tanzania, k-2185, Poland, k-2343, Iceland, k-1666, Russia. Among the accessions of the red-oval-round cultivar type, varieties from the Netherlands, the Czech Republic and Poland emerged, formed a short-rooted, compact rosette with an elevated leaf arrangement in all growing conditions. The formation of high productivity in the open field types was revealed in most cultivars, only the samples of the cultivars White long and Red gave high yields in protected soil. In the spring greenhouse a higher quality yield was obtained. Seven samples of radish have been selected, which are valuable for nearest breeding pro-gram. They can be used as a source breeding material for productivity, root quality, resistance to bolting at low temperatures and a long day.Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ разнообразия ΠΊΠΎΡ€Π½Π΅ΠΏΠ»ΠΎΠ΄Π½Ρ‹Ρ… растСний Π²ΠΈΠ΄Π° Raphanus sativus L., ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ…ΡΡ Π² ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ Π’Π˜Π , ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ всСстороннС ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΡŽ рСдиса ΠΈ Ρ€Π΅Π΄ΡŒΠΊΠΈ, ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ Π½ΠΎΠ²Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΈ сортотипы, Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ биологичСскиС закономСрности формирования фотосинтСтичСского Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π°, уроТая, устойчивости ΠΊ биотичСским ΠΈ абиотичСским стрСссорам. Данная ΡΡ‚Π°Ρ‚ΡŒΡ являСтся ΠΏΠ΅Ρ€Π²ΠΎΠΉ Ρ‡Π°ΡΡ‚ΡŒΡŽ сСрии статСй посвящСнных ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ Π³Π΅Π½ΠΎΡ„ΠΎΠ½Π΄Π° ΠΊΠΎΡ€Π½Π΅ΠΏΠ»ΠΎΠ΄Π½Ρ‹Ρ… растСний Π²ΠΈΠ΄Π° R. sativus L. ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ Π’Π˜Π . Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ ΡΡ‚Π°Ρ‚ΡŒΠΈ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Π² сСбя Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования Ρ€Π°Π½Π΅Π΅ Π½Π΅ ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΈΠ· ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ рСдиса, ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΡΡ‚Π°Ρ‚ΡŒΠΈ Π±ΡƒΠ΄ΡƒΡ‚ посвящСны ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ Π³Π΅Π½ΠΎΡ„ΠΎΠ½Π΄Π° Ρ€Π΅Π΄ΡŒΠΊΠΈ. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… исслСдований Π² 2016-2017 Π³ΠΎΠ΄Π°Ρ…. Π±Ρ‹Π»ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΎ 110 ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² рСдиса Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ эколого-гСографичСского происхоТдСния ΠΈ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΠ΅ сортотипов. Π˜Π·ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ рСдиса Π±Ρ‹Π»ΠΈ ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½Π΅Π½Ρ‹ Π² нСсколько Π³Ρ€ΡƒΠΏΠΏ ΠΏΠΎ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π²Π΅Π³Π΅Ρ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° (раннСспСлыС, срСднСспСлыС ΠΈ позднСспСлыС). ΠžΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π²Π΅Π³Π΅Ρ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° ΠΏΡ€ΠΈ Π²Ρ‹Ρ€Π°Ρ‰ΠΈΠ²Π°Π½ΠΈΠΈ Π² Π·ΠΈΠΌΠ½Π΅Π΅ врСмя ΠΏΡ€ΠΈ нСдостаточной освСщСнности, лишь ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ сортотипа ΠšΡ€Π°ΡΠ½Ρ‹ΠΉ овально-ΠΎΠΊΡ€ΡƒΠ³Π»Ρ‹ΠΉ Π²Π΅Π³Π΅Ρ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π½Π΅ измСнился (ΠΊ-2133, ΠΊ-2343, ΠΊ-1742, ΠΊ-2404). Наблюдалось сильноС ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΊΠΎΡ€Π½Π΅ΠΏΠ»ΠΎΠ΄Π° ΠΏΡ€ΠΈ Π²Ρ‹Ρ€Π°Ρ‰ΠΈΠ²Π°Π½ΠΈΠΈ Π² Π·ΠΈΠΌΠ½Π΅Π΅ врСмя ΠΏΡ€ΠΈ нСдостаточной освСщСнности. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ способны Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ²Ρ‹ΠΉ ΠΎΡ€Π³Π°Π½ Π² Ρ‚Π°ΠΊΠΈΡ… условиях Π±Π΅Π· измСнСния Ρ„ΠΎΡ€ΠΌΡ‹ ΠΊΠΎΡ€Π½Π΅ΠΏΠ»ΠΎΠ΄Π° ΠΈ Π²Π΅Π³Π΅Ρ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° (ΠΊ-2404, НидСрланды; ΠΊ-2133, Ванзания; ΠΊ-2185, Польша; ΠΊ-2343, Исландия; ΠΊ-1666, Россия). Π‘Ρ€Π΅Π΄ΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² сортотипа ΠšΡ€Π°ΡΠ½Ρ‹ΠΉ овально-ΠΎΠΊΡ€ΡƒΠ³Π»Ρ‹ΠΉ Π²Ρ‹Π΄Π΅Π»ΠΈΠ»ΠΈΡΡŒ сортообразцы ΠΈΠ· НидСрландов, Π§Π΅Ρ…ΠΈΠΈ ΠΈ Польши, Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π½ΠΈΠ·ΠΊΠΎΡ€ΠΎΡΠ»ΡƒΡŽ, ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚Π½ΡƒΡŽ Ρ€ΠΎΠ·Π΅Ρ‚ΠΊΡƒ с приподнятым располоТСниСм Π»ΠΈΡΡ‚ΡŒΠ΅Π² Π²ΠΎ всСх условиях выращивания. ВыявлСно Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ высокой уроТайности Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ Π³Ρ€ΡƒΠ½Ρ‚Π΅ Ρƒ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° сортотипов, лишь ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ сортотипов Π‘Π΅Π»Ρ‹ΠΉ Π΄Π»ΠΈΠ½Π½Ρ‹ΠΉ ΠΈ ΠšΡ€Π°ΡΠ½Ρ‹ΠΉ ΠΈΠΌΠ΅Π»ΠΈ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΡƒΡ€ΠΎΠΆΠ°ΠΉΠ½ΠΎΡΡ‚ΡŒ Π² Π·Π°Ρ‰ΠΈΡ‰Π΅Π½Π½ΠΎΠΌ Π³Ρ€ΡƒΠ½Ρ‚Π΅. Π’ вСсСннСй Ρ‚Π΅ΠΏΠ»ΠΈΡ†Π΅ формировался ΡƒΡ€ΠΎΠΆΠ°ΠΉ Π±ΠΎΠ»Π΅Π΅ высокого качСства. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΎ 7 ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² рСдиса, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ ΡΠ΅Π»Π΅ΠΊΡ†ΠΈΠΎΠ½Π½ΡƒΡŽ Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ. Π˜Ρ…, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π² качСствС исходного ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° для сСлСкции Π½Π° ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, качСство ΠΊΠΎΡ€Π½Π΅ΠΏΠ»ΠΎΠ΄Π°, ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΊ ΡΡ‚Π΅Π±Π»Π΅Π²Π°Π½ΠΈΡŽ Π² условиях ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½Ρ‹Ρ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ ΠΈ Π΄Π»ΠΈΠ½Π½ΠΎΠ³ΠΎ дня

    Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ характСристика биохимичСского состава ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Π±Π°ΠΊΠ»Π°ΠΆΠ°Π½Π° ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ Π’Π˜Π  Π² Π·Π°Ρ‰ΠΈΡ‰Π΅Π½Π½ΠΎΠΌ Π³Ρ€ΡƒΠ½Ρ‚Π΅

    Get PDF
    Relevance. The presence of valuable biologically active substances, carbohydrates, organic acids and others in the eggplant fruits makes the culture one of the vegetables with the highest antioxidant activity. The VIR collection of eggplant includes 830 accessions from 70 countries of the world. The study of new acquisitions in the VIR collection presupposes a comprehensive assessment of the received material according to morphological, biological and economically valuable characteristics. The main objective of the study was to assess the variability of the biochemical parameters of egg-plant fruits in technical ripeness; as well as determination of the best accessions by the chemical composition of fruits and the content of biologically active substances.Materials and methods. The study of 19 accessions of eggplant accessions was carried out in 2020 in a winter greenhouse in Pushkin and Pavlovsk Laboratories of VIR (St. Petersburg). The morphological description of the accessions and the assessment for biological and economically valuable traits were carried out in accordance with the methodological guidelines and the VIR classifier. Biochemical analysis was carried out in the Department of Biochemistry and Molecular Biology of VIR in the phase of technical ripeness of fruits in terms of: dry matter content, sugars, total acidity, ascorbic acid, pigments and anthocyanins.Results. As a result of this study, the amplitude of variability in the content of dry matter (6.44- 8.68%), sugars (1.78-3.72%), ascorbic acid (5.92-21.08 mg/100 g), titrated acidity (0.10-0.31%), chlorophylls (0.52-15.13 mg/100 g), carotenoids (1.19-6.99 mg/100 g), Ξ²-carotene (0.11-0.52 mg/100 g) and anthocyanins (12.94-1031.40 mg/100 g) in eggplant fruits. Accessions with a high content of biologically active substances in fruits in technical ripeness were identified: Russian hybrids Bourgeois F1, Azhur F1; local accessions from Armenia: k-3156, k-3159, k-3161.ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. НаличиС Π² ΠΏΠ»ΠΎΠ΄Π°Ρ… Π±Π°ΠΊΠ»Π°ΠΆΠ°Π½Π° Ρ†Π΅Π½Π½Ρ‹Ρ… биологичСски Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… вСщСств, ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΠ², органичСских кислот ΠΈ Ρ‚.Π΄. Π²Ρ‹Π²ΠΎΠ΄ΠΈΡ‚ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρƒ Π² число ΠΎΠ²ΠΎΡ‰Π΅ΠΉ, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΡ… наибольшСй антиоксидантной Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ. ΠšΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΡ Π±Π°ΠΊΠ»Π°ΠΆΠ°Π½Π° Π’Π˜Π  Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ 830 ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΈΠ· 70 стран ΠΌΠΈΡ€Π°. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π½ΠΎΠ²Ρ‹Ρ… поступлСний Π² ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΡŽ Π’Π˜Π  ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡƒΡŽ ΠΎΡ†Π΅Π½ΠΊΡƒ ΠΏΠΎΡΡ‚ΡƒΠΏΠΈΠ²ΡˆΠ΅Π³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΏΠΎ морфологичСским, биологичСским ΠΈ хозяйствСнно Ρ†Π΅Π½Π½Ρ‹ΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ. Главная Π·Π°Π΄Π°Ρ‡Π° исслСдования Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π»Π°ΡΡŒ Π² ΠΎΡ†Π΅Π½ΠΊΠ΅ измСнчивости биохимичСских ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ ΠΏΠ»ΠΎΠ΄ΠΎΠ² Π±Π°ΠΊΠ»Π°ΠΆΠ°Π½Π° Π² тСхничСской спСлости; Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π»ΡƒΡ‡ΡˆΠΈΡ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΏΠΎ химичСскому составу ΠΏΠ»ΠΎΠ΄ΠΎΠ² ΠΈ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ биологичСски Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… вСщСств.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ 19 ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Π±Π°ΠΊΠ»Π°ΠΆΠ°Π½Π° ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² 2020 Π³ΠΎΠ΄Ρƒ Π² условиях Π·ΠΈΠΌΠ½Π΅ΠΉ остСклСнной стСллаТной Ρ‚Π΅ΠΏΠ»ΠΈΡ†Ρ‹ Π½Π°ΡƒΡ‡Π½ΠΎ-производствСнной Π±Π°Π·Ρ‹ Β«ΠŸΡƒΡˆΠΊΠΈΠ½ΡΠΊΠΈΠ΅ ΠΈ ПавловскиС Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ Π’Π˜Π Β» (Π‘Π°Π½ΠΊΡ‚-ΠŸΠ΅Ρ‚Π΅Ρ€Π±ΡƒΡ€Π³). ΠœΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ описаниС ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΈ ΠΎΡ†Π΅Π½ΠΊΡƒ ΠΏΠΎ биологичСским ΠΈ хозяйствСнно Ρ†Π΅Π½Π½Ρ‹ΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² соотвСтствии с мСтодичСскими указаниями ΠΈ классификатором Π’Π˜Π . БиохимичСский Π°Π½Π°Π»ΠΈΠ· ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² ΠΎΡ‚Π΄Π΅Π»Π΅ Π±ΠΈΠΎΡ…ΠΈΠΌΠΈΠΈ ΠΈ молСкулярной Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ Π’Π˜Π  Π² Ρ„Π°Π·Π΅ тСхничСской спСлости ΠΏΠ»ΠΎΠ΄ΠΎΠ² ΠΏΠΎ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ показатСлям: содСрТаниС сухого вСщСства, сахаров, ΠΎΠ±Ρ‰Π΅ΠΉ кислотности, аскорбиновой кислоты, ΠΏΠΈΠ³ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΈ Π°Π½Ρ‚ΠΎΡ†ΠΈΠ°Π½Ρ‹.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ Π²Ρ‹Π²ΠΎΠ΄Ρ‹.Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Π΄Π°Π½Π½ΠΎΠ³ΠΎ исслСдования ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Π° измСнчивости содСрТания сухих вСщСств (6,44-8,68%), сахаров (1,78-3,72%), аскорбиновой кислоты (5,92-21,08 ΠΌΠ³/100 Π³), Ρ‚ΠΈΡ‚Ρ€ΡƒΠ΅ΠΌΠΎΠΉ кислотности (0,10-0,31%), Ρ…Π»ΠΎΡ€ΠΎΡ„ΠΈΠ»Π»ΠΎΠ² (0,52-15,13 ΠΌΠ³/100 Π³), ΠΊΠ°Ρ€ΠΎΡ‚ΠΈΠ½ΠΎΠΈΠ΄ΠΎΠ² (1,19-6,99 ΠΌΠ³/100 Π³), Ξ²-ΠΊΠ°Ρ€ΠΎΡ‚ΠΈΠ½Π° (0,11-0,52 ΠΌΠ³/100 Π³) ΠΈ Π°Π½Ρ‚ΠΎΡ†ΠΈΠ°Π½ΠΎΠ² (12,94-1031,40 ΠΌΠ³/100 Π³) Π² ΠΏΠ»ΠΎΠ΄Π°Ρ… Π±Π°ΠΊΠ»Π°ΠΆΠ°Π½Π°. Π’Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ с высоким содСрТаниСм биологичСски Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… вСщСств Π² ΠΏΠ»ΠΎΠ΄Π°Ρ… Π² тСхничСской спСлости: российскиС Π³ΠΈΠ±Ρ€ΠΈΠ΄Ρ‹ Π‘ΡƒΡ€ΠΆΡƒΠΉ F1, АТур F1; мСстныС ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ ΠΈΠ· АрмСнии: ΠΊ-3156, ΠΊ-3159, ΠΊ-3161
    • …
    corecore