5,533 research outputs found

    Parameterized Model-Checking for Timed-Systems with Conjunctive Guards (Extended Version)

    Full text link
    In this work we extend the Emerson and Kahlon's cutoff theorems for process skeletons with conjunctive guards to Parameterized Networks of Timed Automata, i.e. systems obtained by an \emph{apriori} unknown number of Timed Automata instantiated from a finite set U1,…,UnU_1, \dots, U_n of Timed Automata templates. In this way we aim at giving a tool to universally verify software systems where an unknown number of software components (i.e. processes) interact with continuous time temporal constraints. It is often the case, indeed, that distributed algorithms show an heterogeneous nature, combining dynamic aspects with real-time aspects. In the paper we will also show how to model check a protocol that uses special variables storing identifiers of the participating processes (i.e. PIDs) in Timed Automata with conjunctive guards. This is non-trivial, since solutions to the parameterized verification problem often relies on the processes to be symmetric, i.e. indistinguishable. On the other side, many popular distributed algorithms make use of PIDs and thus cannot directly apply those solutions

    Randomized benchmarking of single and multi-qubit control in liquid-state NMR quantum information processing

    Full text link
    Being able to quantify the level of coherent control in a proposed device implementing a quantum information processor (QIP) is an important task for both comparing different devices and assessing a device's prospects with regards to achieving fault-tolerant quantum control. We implement in a liquid-state nuclear magnetic resonance QIP the randomized benchmarking protocol presented by Knill et al (PRA 77: 012307 (2008)). We report an error per randomized π2\frac{\pi}{2} pulse of 1.3±0.1×10−41.3 \pm 0.1 \times 10^{-4} with a single qubit QIP and show an experimentally relevant error model where the randomized benchmarking gives a signature fidelity decay which is not possible to interpret as a single error per gate. We explore and experimentally investigate multi-qubit extensions of this protocol and report an average error rate for one and two qubit gates of 4.7±0.3×10−34.7 \pm 0.3 \times 10^{-3} for a three qubit QIP. We estimate that these error rates are still not decoherence limited and thus can be improved with modifications to the control hardware and software.Comment: 10 pages, 6 figures, submitted versio

    Computed microtomography visualization and quantification of mouse ischemic brain lesion by nonionic radio contrast agents.

    Get PDF
    AIM: To explore the possibility of brain imaging by microcomputed tomography (microCT) using x-ray contrasting methods to visualize mouse brain ischemic lesions after middle cerebral artery occlusion (MCAO). ----- METHODS: Isolated brains were immersed in ionic or nonionic radio contrast agent (RCA) for 5 days and subsequently scanned using microCT scanner. To verify whether ex-vivo microCT brain images can be used to characterize ischemic lesions, they were compared to Nissl stained serial histological sections of the same brains. To verify if brains immersed in RCA may be used afterwards for other methods, subsequent immunofluorescent labeling with anti-NeuN was performed. ----- RESULTS: Nonionic RCA showed better gray to white matter contrast in the brain, and therefore was selected for further studies. MicroCT measurement of ischemic lesion size and cerebral edema significantly correlated with the values determined by Nissl staining (ischemic lesion size: P=0.0005; cerebral edema: P=0.0002). Brain immersion in nonionic RCA did not affect subsequent immunofluorescent analysis and NeuN immunoreactivity. ----- CONCLUSION: MicroCT method was proven to be suitable for delineation of the ischemic lesion from the non-infarcted tissue, and quantification of lesion volume and cerebral edema

    Using Flow Specifications of Parameterized Cache Coherence Protocols for Verifying Deadlock Freedom

    Full text link
    We consider the problem of verifying deadlock freedom for symmetric cache coherence protocols. In particular, we focus on a specific form of deadlock which is useful for the cache coherence protocol domain and consistent with the internal definition of deadlock in the Murphi model checker: we refer to this deadlock as a system- wide deadlock (s-deadlock). In s-deadlock, the entire system gets blocked and is unable to make any transition. Cache coherence protocols consist of N symmetric cache agents, where N is an unbounded parameter; thus the verification of s-deadlock freedom is naturally a parameterized verification problem. Parametrized verification techniques work by using sound abstractions to reduce the unbounded model to a bounded model. Efficient abstractions which work well for industrial scale protocols typically bound the model by replacing the state of most of the agents by an abstract environment, while keeping just one or two agents as is. However, leveraging such efficient abstractions becomes a challenge for s-deadlock: a violation of s-deadlock is a state in which the transitions of all of the unbounded number of agents cannot occur and so a simple abstraction like the one above will not preserve this violation. In this work we address this challenge by presenting a technique which leverages high-level information about the protocols, in the form of message sequence dia- grams referred to as flows, for constructing invariants that are collectively stronger than s-deadlock. Efficient abstractions can be constructed to verify these invariants. We successfully verify the German and Flash protocols using our technique

    Milk Yield of Dairy Buffaloes Supplemented with Yeast Solution and Yeast-fermented Cassava Pulp

    Get PDF
    Feed resource availability and quality are two of the major factors limiting dairy production in the Philippines. Utilization of microbial-based feed additives and agricultural by-products such as cassava pulp aided by fermentation technology can help provide the needed resource. This study aimed to determine the effect of activated yeast (Saccharomyces cerevisiae) solution (AYS) and yeast-fermented cassava pulp (YFCP) on milk production and feed cost-efficiency in dairy buffaloes. The study followed RCBD design using 63 dairy buffaloes at the Philippine Carabao Center in Ubay Stock Farm, Bohol. The average daily milk yield (ADMY) of buffaloes supplemented with 0.5L AYS and 1L AYS twice daily were greater than that of control buffaloes by 0.67L and 0.69L, respectively (P = 0.0039).On the other hand, the ADMY of buffaloes fed with YFCP and YFCP+AYS were greater than that of control buffaloes by 0.64 and 0.68L, respectively (P = 0.0320). Supplementation of AYS and feeding YFCP yielded the lowest cost per liter of milk produced at PhP 20.25 and PhP 16.24, respectively. It is recommended to supplement milking dairy buffaloes with AYS or feeding YFCP in areas with cassava pulp to increase feed resource, increase milk production and improve feed cost-efficiency thereby increasing significantly the farmer’s income

    C–F bond activation of perfluorinated arenes by a bioxazoline-derived N-heterocyclic carbene

    Get PDF
    The N-heterocyclic carbene IBioxMe4 enacts selective single and double C–F bond activation of octafluorotoluene and hexafluorobenzene, respectively. The formation of the fluoroarene substituted, zwitterionic imidazoliumolate products is consistent with a mechanism involving nucleophilic aromatic substitution and subsequent oxazoline ring opening by liberated fluoride

    UV-light promoted C–H bond activation of benzene and fluorobenzenes by an iridium(i) pincer complex

    Get PDF
    Iridium(I) carbonyl complex [Ir(2,6-(PtBu2CH2)2C6H3)(CO)] undergoes reversible C–H bond activation of benzene and a series of fluorobenzenes on UV irradiation. Exclusive ortho-selectivity is observed in reactions of fluorobenzene and 1,2-difluorobenzene

    Negative Quasi-Probability as a Resource for Quantum Computation

    Full text link
    A central problem in quantum information is to determine the minimal physical resources that are required for quantum computational speedup and, in particular, for fault-tolerant quantum computation. We establish a remarkable connection between the potential for quantum speed-up and the onset of negative values in a distinguished quasi-probability representation, a discrete analog of the Wigner function for quantum systems of odd dimension. This connection allows us to resolve an open question on the existence of bound states for magic-state distillation: we prove that there exist mixed states outside the convex hull of stabilizer states that cannot be distilled to non-stabilizer target states using stabilizer operations. We also provide an efficient simulation protocol for Clifford circuits that extends to a large class of mixed states, including bound universal states.Comment: 15 pages v4: This is a major revision. In particular, we have added a new section detailing an explicit extension of the Gottesman-Knill simulation protocol to deal with positively represented states and measurement (even when these are non-stabilizer). This paper also includes significant elaboration on the two main results of the previous versio
    • …
    corecore