8,628 research outputs found
Enhanced uptake of water by oxidatively processed oleic acid
International audienceA quartz crystal microbalance apparatus has been used to measure the room temperature uptake of water vapour by thin films of oleic acid as a function of relative humidity, both before and following exposure of the films to various partial pressures of gas phase ozone. A rapid increase in the water-sorbing ability of the film is observed as its exposure to ozone is increased, followed by a plateau region in which additional water is taken up more gradually. In this fully-processed region the mass of water taken up by the film is about 4 times that of the unprocessed film. Infrared spectra of the films, measured after variable exposures to ozone, show dramatic increases in both the "free" and hydrogen-bonded O-H stretching regions, and a decrease in the intensity of olefinic features. These results are consistent with the formation of an oxygenated polymeric product or products, as well as the gas phase products previously identified
Donaldson-Thomas invariants and wall-crossing formulas
Notes from the report at the Fields institute in Toronto. We introduce the
Donaldson-Thomas invariants and describe the wall-crossing formulas for
numerical Donaldson-Thomas invariants.Comment: 18 pages. To appear in the Fields Institute Monograph Serie
Forward and Inverse Processing in Electromagnetic NDE Using Squid
Electromagnetic NDE has been successfully applied to the detection of surface cracks and is routinely used to locate flaws in airframes, pipelines and in steel offshore oil platforms. However, there are still many problems to be solved, particularly in the aviation industry, which require the detection of deeper flaws such as corrosion in multi-layered structures and cracks around rivet holes which are obscured by the head of the rivet. Most systems use coils as detectors (though Hall probes are occasionally used), which have low sensitivity at low frequencies due to the fact that the induced voltage is proportional to the rate of change of magnetic flux through the coil. Unfortunately it is necessary to use low frequencies to detect deep subsurface flaws on account of the skin-depth effect, otherwise the electromagnetic field cannot propagate down to the depth of the flaw. SQUID (Superconducting Quantum Interference Device) sensors are ideally suited to overcome the deficiencies of coils, because they are primarily detectors of magnetic flux which, together with their high sensitivity, makes the detection of deep flaws more likely. SQUIDs have been successfully used for measuring very low magnetic fields, particularly in the field of biomagnetism, and it is hoped to exploit this sensitivity to detect flaws at large stand-off distances for example in pipelines which are surrounded by thick layers of cladding
Khovanov homology is an unknot-detector
We prove that a knot is the unknot if and only if its reduced Khovanov
cohomology has rank 1. The proof has two steps. We show first that there is a
spectral sequence beginning with the reduced Khovanov cohomology and abutting
to a knot homology defined using singular instantons. We then show that the
latter homology is isomorphic to the instanton Floer homology of the sutured
knot complement: an invariant that is already known to detect the unknot.Comment: 124 pages, 13 figure
Interactions of asbestos-activated macrophages with an experimental fibrosarcoma
Supernatants from in vivo asbestos-activated macrophages failed to show any cytostatic activity against a syngeneic fibrosarcoma cell line in vitro. UICC chrysotile-induced peritoneal exudate cells also failed to demonstrate any growth inhibitory effect on the same cells in Winn assays of tumor growth. Mixing UICC crocidolite with inoculated tumor cells resulted in a dose-dependent inhibition of tumor growth; this could, however, be explained by a direct cytostatic effect on the tumor cells of high doses of crocidolite, which was observed in vitro
I-Brane Inflow and Anomalous Couplings on D-Branes
We show that the anomalous couplings of -brane gauge and gravitational
fields to Ramond-Ramond tensor potentials can be deduced by a simple anomaly
inflow argument applied to intersecting -branes and use this to determine
the eight-form gravitational coupling.Comment: 8 pages, harvmac, no figure
On semistable principal bundles over a complex projective manifold, II
Let (X, \omega) be a compact connected Kaehler manifold of complex dimension
d and E_G a holomorphic principal G-bundle on X, where G is a connected
reductive linear algebraic group defined over C. Let Z (G) denote the center of
G. We prove that the following three statements are equivalent: (1) There is a
parabolic subgroup P of G and a holomorphic reduction of the structure group of
E_G to P (say, E_P) such that the bundle obtained by extending the structure
group of E_P to L(P)/Z(G) (where L(P) is the Levi quotient of P) admits a flat
connection; (2) The adjoint vector bundle ad(E_G) is numerically flat; (3) The
principal G-bundle E_G is pseudostable, and the degree of the charateristic
class c_2(ad(E_G) is zero.Comment: 15 page
Development of a new laser Doppler velocimeter for the Ames High Reynolds Channel No. 2
A new two-channel laser Doppler velocimeter developed for the Ames High Reynolds Channel No. 2 is described. Design features required for the satisfactory operation of the optical system in the channel environment are discussed. Fiber optics are used to transmit the megahertz Doppler signal to the photodetectors located outside the channel pressure vessel, and provision is made to isolate the optical system from pressure and thermal strain effects. Computer-controlled scanning mirrors are used to position the laser beams in the channel flow. Techniques used to seed the flow with 0.5-micron-diam polystyrene spheres avoiding deposition on the test-section windows and porous boundary-layer removal panels are described. Preliminary results are presented with a discussion of several of the factors affecting accuracy
Chern-Simons Solitons, Toda Theories and the Chiral Model
The two-dimensional self-dual Chern--Simons equations are equivalent to the
conditions for static, zero-energy solutions of the -dimensional gauged
nonlinear Schr\"odinger equation with Chern--Simons matter-gauge dynamics. In
this paper we classify all finite charge solutions by first
transforming the self-dual Chern--Simons equations into the two-dimensional
chiral model (or harmonic map) equations, and then using the Uhlenbeck--Wood
classification of harmonic maps into the unitary groups. This construction also
leads to a new relationship between the Toda and chiral model
solutions
On the origin of the -transition in liquid Sulphur
Developing a novel experimental technique, we applied photon correlation
spectroscopy using infrared radiation in liquid Sulphur around ,
i.e. in the temperature range where an abrupt increase in viscosity by four
orders of magnitude is observed upon heating within few degrees. This allowed
us - overcoming photo-induced and absorption effects at visible wavelengths -
to reveal a chain relaxation process with characteristic time in the ms range.
These results do rehabilitate the validity of the Maxwell relation in Sulphur
from an apparent failure, allowing rationalizing the mechanical and
thermodynamic behavior of this system within a viscoelastic scenario.Comment: 5 pages, 4 eps figures, accepted in Phys. Rev. Let
- …