7,203 research outputs found
Field Quantization, Photons and Non-Hermitean Modes
Field quantization in three dimensional unstable optical systems is treated
by expanding the vector potential in terms of non-Hermitean (Fox-Li) modes in
both the cavity and external regions. The cavity non-Hermitean modes (NHM) are
treated using the paraxial and monochromaticity approximations. The NHM
bi-orthogonality relationships are used in a standard canonical quantization
procedure based on introducing generalised coordinates and momenta for the
electromagnetic (EM) field. The quantum EM field is equivalent to a set of
quantum harmonic oscillators (QHO), associated with either the cavity or the
external region NHM. This confirms the validity of the photon model in unstable
optical systems, though the annihilation and creation operators for each QHO
are not Hermitean adjoints. The quantum Hamiltonian for the EM field is the sum
of non-commuting cavity and external region contributions, each of which is sum
of independent QHO Hamiltonians for each NHM, but the external field
Hamiltonian also includes a coupling term responsible for external NHM photon
exchange processes. Cavity energy gain and loss processes is associated with
the non-commutativity of cavity and external region operators, given in terms
of surface integrals involving cavity and external region NHM functions on the
cavity-external region boundary. The spontaneous decay of a two-level atom
inside an unstable cavity is treated using the essential states approach and
the rotating wave approximation. Atomic transitions leading to cavity NHM
photon absorption have a different coupling constant to those leading to photon
emission, a feature resulting from the use of NHM functions. Under certain
conditions the decay rate is enhanced by the Petermann factor.Comment: 38 pages, tex, 2 figures, ps. General expression for decay rate
added. To be published in Journal of Modern Optic
Decay of highly-correlated spin states in a dipolar-coupled solid
We have measured the decay of NMR multiple quantum coherence intensities both
under the internal dipolar Hamiltonian as well as when this interaction is
effectively averaged to zero, in the cubic calcium fluoride (CaF2) spin system
and the pseudo one-dimensional system of fluoroapatite. In calcium fluoride the
decay rates depend both on the number of correlated spins in the cluster, as
well as on the coherence number. For smaller clusters, the decays depend
strongly on coherence number, but this dependence weakens as the size of the
cluster increases. The same scaling was observed when the coherence
distribution was measured in both the usual Zeeman or z basis and the x basis.
The coherence decay in the one dimensional fluoroapatite system did not change
significantly as a function of the multiple quantum growth time, in contrast to
the calcium fluoride case. While the growth of coherence orders is severely
restricted in this case, the number of correlated spins should continue to
grow, albeit more slowly. All coherence intensities were observed to decay as
Gaussian functions in time. In all cases the standard deviation of the observed
decay appeared to scale linearly with coherence number.Comment: 7 pages, 9 figures. submitted to PR
Radio Galaxy Clustering at z~0.3
Radio galaxies are uniquely useful as probes of large-scale structure as
their uniform identification with giant elliptical galaxies out to high
redshift means that the evolution of their bias factor can be predicted. As the
initial stage in a project to study large-scale structure with radio galaxies
we have performed a small redshift survey, selecting 29 radio galaxies in the
range 0.19<z<0.45 from a contiguous 40 square degree area of sky. We detect
significant clustering within this sample. The amplitude of the two-point
correlation function we measure is consistent with no evolution from the local
(z<0.1) value. This is as expected in a model in which radio galaxy hosts form
at high redshift and thereafter obey a continuity equation, although the
signal:noise of the detection is too low to rule out other models. Larger
surveys out to z~1 should reveal the structures of superclusters at
intermediate redshifts and strongly constrain models for the evolution of
large-scale structure.Comment: 7 pages, 3 figures, accepted by ApJ Letter
Atmospheric and Oceanographic Information Processing System (AOIPS) system description
The development of hardware and software for an interactive, minicomputer based processing and display system for atmospheric and oceanographic information extraction and image data analysis is described. The major applications of the system are discussed as well as enhancements planned for the future
Recommended from our members
Single-shot optical conductivity measurement of dense aluminum plasmas
The optical conductivity of a dense femtosecond laser-heated aluminum plasma heated to 0.1-1.5 eV was measured using frequency-domain interferometry with chirped pulses, permitting simultaneous observation of optical probe reflectivity and probe pulse phase shift. Coupled with published models of bound-electron contributions to the conductivity, these two independent experimental data yielded a direct measurement of both real and imaginary components of the plasma conductivity.DOE National Nuclear Security Administration DE-FC52-03NA00156Physic
Decoherence Rates in Large Scale Quantum Computers and Macroscopic Systems
Markovian regime decoherence effects in quantum computers are studied in
terms of the fidelity for the situation where the number of qubits N becomes
large. A general expression giving the decoherence time scale in terms of
Markovian relaxation elements and expectation values of products of system
fluctuation operators is obtained, which could also be applied to study
decoherence in other macroscopic systems such as Bose condensates and
superconductors. A standard circuit model quantum computer involving
three-state lambda system ionic qubits is considered, with qubits localised
around well-separated positions via trapping potentials. The centre of mass
vibrations of the qubits act as a reservoir. Coherent one and two qubit gating
processes are controlled by time dependent localised classical electromagnetic
fields that address specific qubits, the two qubit gating processes being
facilitated by a cavity mode ancilla, which permits state interchange between
qubits. With a suitable choice of parameters, it is found that the decoherence
time can be made essentially independent of N.Comment: Minor revisions. To be published in J Mod Opt. One figur
The Effect of Hot Gas in WMAP's First Year Data
By cross-correlating templates constructed from the 2 Micron All Sky Survey
(2MASS) Extended Source (XSC) catalogue with WMAP's first year data, we search
for the thermal Sunyaev-Zel'dovich signature induced by hot gas in the local
Universe. Assuming that galaxies trace the distribution of hot gas, we select
regions on the sky with the largest projected density of galaxies. Under
conservative assumptions on the amplitude of foreground residuals, we find a
temperature decrement of -35 7 K ( detection level,
the highest reported so far) in the 26 square degrees of the sky
containing the largest number of galaxies per solid angle. We show that most of
the reported signal is caused by known galaxy clusters which, when convolved
with the average beam of the WMAP W band channel, subtend a typical angular
size of 20--30 arcmins. Finally, after removing from our analyses all pixels
associated with known optical and X-ray galaxy clusters, we still find a tSZ
decrement of -96 37 K in pixels subtending about 0.8 square
degrees on the sky. Most of this signal is coming from five different cluster
candidates in the Zone of Avoidance (ZoA), present in the Clusters In the ZoA
(CIZA) catalogue. We found no evidence that structures less bound than clusters
contribute to the tSZ signal present in the WMAP data.Comment: 10 pages, 4 figures, matches accepted version in ApJ Letter
Asymmetric double-well potential for single atom interferometry
We consider the evolution of a single-atom wavefunction in a time-dependent
double-well interferometer in the presence of a spatially asymmetric potential.
We examine a case where a single trapping potential is split into an asymmetric
double well and then recombined again. The interferometer involves a
measurement of the first excited state population as a sensitive measure of the
asymmetric potential. Based on a two-mode approximation a Bloch vector model
provides a simple and satisfactory description of the dynamical evolution. We
discuss the roles of adiabaticity and asymmetry in the double-well
interferometer. The Bloch model allows us to account for the effects of
asymmetry on the excited state population throughout the interferometric
process and to choose the appropriate splitting, holding and recombination
periods in order to maximize the output signal. We also compare the outcomes of
the Bloch vector model with the results of numerical simulations of the
multi-state time-dependent Schroedinger equation.Comment: 9 pages, 6 figure
Theory of Pseudomodes in Quantum Optical Processes
This paper deals with non-Markovian behaviour in atomic systems coupled to a
structured reservoir of quantum EM field modes, with particular relevance to
atoms interacting with the field in high Q cavities or photonic band gap
materials. In cases such as the former, we show that the pseudo mode theory for
single quantum reservoir excitations can be obtained by applying the Fano
diagonalisation method to a system in which the atomic transitions are coupled
to a discrete set of (cavity) quasimodes, which in turn are coupled to a
continuum set of (external) quasimodes with slowly varying coupling constants
and continuum mode density. Each pseudomode can be identified with a discrete
quasimode, which gives structure to the actual reservoir of true modes via the
expressions for the equivalent atom-true mode coupling constants. The quasimode
theory enables cases of multiple excitation of the reservoir to now be treated
via Markovian master equations for the atom-discrete quasimode system.
Applications of the theory to one, two and many discrete quasimodes are made.
For a simple photonic band gap model, where the reservoir structure is
associated with the true mode density rather than the coupling constants, the
single quantum excitation case appears to be equivalent to a case with two
discrete quasimodes
- …