5,913 research outputs found

    High-fidelity simulation of an ultrasonic standing-wave thermoacoustic engine with bulk viscosity effects

    Full text link
    We have carried out boundary-layer-resolved, unstructured fully-compressible Navier--Stokes simulations of an ultrasonic standing-wave thermoacoustic engine (TAE) model. The model is constructed as a quarter-wavelength engine, approximately 4 mm by 4 mm in size and operating at 25 kHz, and comprises a thermoacoustic stack and a coin-shaped cavity, a design inspired by Flitcroft and Symko (2013). Thermal and viscous boundary layers (order of 10 μ\mathrm{\mu}m) are resolved. Vibrational and rotational molecular relaxation are modeled with an effective bulk viscosity coefficient modifying the viscous stress tensor. The effective bulk viscosity coefficient is estimated from the difference between theoretical and semi-empirical attenuation curves. Contributions to the effective bulk viscosity coefficient can be identified as from vibrational and rotational molecular relaxation. The inclusion of the coefficient captures acoustic absorption from infrasonic (\sim10 Hz) to ultrasonic (\sim100 kHz) frequencies. The value of bulk viscosity depends on pressure, temperature, and frequency, as well as the relative humidity of the working fluid. Simulations of the TAE are carried out to the limit cycle, with growth rates and limit-cycle amplitudes varying non-monotonically with the magnitude of bulk viscosity, reaching a maximum for a relative humidity level of 5%. A corresponding linear model with minor losses was developed; the linear model overpredicts transient growth rate but gives an accurate estimate of limit cycle behavior. An improved understanding of thermoacoustic energy conversion in the ultrasonic regime based on a high-fidelity computational framework will help to further improve the power density advantages of small-scale thermoacoustic engines.Comment: 55th AIAA Aerospace Sciences Meeting, AIAA SciTech, 201

    Big brother is watching - using digital disease surveillance tools for near real-time forecasting

    Get PDF
    Abstract for the International Journal of Infectious Diseases 79 (S1) (2019).https://www.ijidonline.com/article/S1201-9712(18)34659-9/abstractPublished versio

    Tremor in motor neuron disease may be central rather than peripheral in origin

    Get PDF
    BACKGROUND AND PURPOSE: Motor neuron disease (MND) refers to a spectrum of degenerative diseases affecting motor neurons. Recent clinical and post-mortem observations have revealed considerable variability in the phenotype. Rhythmic involuntary oscillations of the hands during action, resembling tremor, can occur in MND, but their pathophysiology has not yet been investigated. METHODS: A total of 120 consecutive patients with MND were screened for tremor. Twelve patients with action tremor and no other movement disorders were found. Ten took part in the study. Tremor was recorded bilaterally using surface electromyography (EMG) and triaxial accelerometer, with and without a variable weight load. Power spectra of rectified EMG and accelerometric signal were calculated. To investigate a possible cerebellar involvement, eyeblink classic conditioning was performed in five patients. RESULTS: Action tremor was present in about 10% of our population. All patients showed distal postural tremor of low amplitude and constant frequency, bilateral with a small degree of asymmetry. Two also showed simple kinetic tremor. A peak at the EMG and accelerometric recordings ranging from 4 to 12 Hz was found in all patients. Loading did not change peak frequency in either the electromyographic or accelerometric power spectra. Compared with healthy volunteers, patients had a smaller number of conditioned responses during eyeblink classic conditioning. CONCLUSIONS: Our data suggest that patients with MND can present with action tremor of a central origin, possibly due to a cerebellar dysfunction. This evidence supports the novel idea of MND as a multisystem neurodegenerative disease and that action tremor can be part of this condition

    Strange Quarks Nuggets in Space: Charges in Seven Settings

    Full text link
    We have computed the charge that develops on an SQN in space as a result of balance between the rates of ionization by ambient gammas and capture of ambient electrons. We have also computed the times for achieving that equilibrium and binding energy of the least bound SQN electrons. We have done this for seven different settings. We sketch the calculations here and give their results in the Figure and Table II; details are in the Physical Review D.79.023513 (2009).Comment: Six pages, one figure. To appear in proceedings of the 2008 UCLA coference on dark matter and dark energ

    Information theoretic treatment of tripartite systems and quantum channels

    Full text link
    A Holevo measure is used to discuss how much information about a given POVM on system aa is present in another system bb, and how this influences the presence or absence of information about a different POVM on aa in a third system cc. The main goal is to extend information theorems for mutually unbiased bases or general bases to arbitrary POVMs, and especially to generalize "all-or-nothing" theorems about information located in tripartite systems to the case of \emph{partial information}, in the form of quantitative inequalities. Some of the inequalities can be viewed as entropic uncertainty relations that apply in the presence of quantum side information, as in recent work by Berta et al. [Nature Physics 6, 659 (2010)]. All of the results also apply to quantum channels: e.g., if \EC accurately transmits certain POVMs, the complementary channel \FC will necessarily be noisy for certain other POVMs. While the inequalities are valid for mixed states of tripartite systems, restricting to pure states leads to the basis-invariance of the difference between the information about aa contained in bb and cc.Comment: 21 pages. An earlier version of this paper attempted to prove our main uncertainty relation, Theorem 5, using the achievability of the Holevo quantity in a coding task, an approach that ultimately failed because it did not account for locking of classical correlations, e.g. see [DiVincenzo et al. PRL. 92, 067902 (2004)]. In the latest version, we use a very different approach to prove Theorem

    A Stronger Subadditivity of Entropy

    Full text link
    The strong subadditivity of entropy plays a key role in several areas of physics and mathematics. It states that the entropy S[\rho]= - Tr (\rho \ln \rho) of a density matrix \rho_{123} on the product of three Hilbert spaces satisfies S[\rho_{123}] - S[\rho_{23}] \leq S[\rho_{12}]- S[\rho_2]. We strengthen this to S[\rho_{123}] - S[\rho_{12}] \leq \sum_\alpha n^\alpha (S[\rho_{23}^\alpha ] - S[\rho_2^\alpha ]), where the n^\alpha are weights and the \rho_{23}^\alpha are partitions of \rho_{23}. Correspondingly, there is a strengthening of the theorem that the map A -> Tr \exp[L + \ln A] is concave. As applications we prove some monotonicity and convexity properties of the Wehrl entropy and entropy inequalities for quantum gases.Comment: LaTeX2e, 24 page

    The ground state of a class of noncritical 1D quantum spin systems can be approximated efficiently

    Full text link
    We study families H_n of 1D quantum spin systems, where n is the number of spins, which have a spectral gap \Delta E between the ground-state and first-excited state energy that scales, asymptotically, as a constant in n. We show that if the ground state |\Omega_m> of the hamiltonian H_m on m spins, where m is an O(1) constant, is locally the same as the ground state |\Omega_n>, for arbitrarily large n, then an arbitrarily good approximation to the ground state of H_n can be stored efficiently for all n. We formulate a conjecture that, if true, would imply our result applies to all noncritical 1D spin systems. We also include an appendix on quasi-adiabatic evolutions.Comment: 9 pages, 1 eps figure, minor change

    Benign tremulous parkinsonism of the young-consider Parkin

    Get PDF
    Benign tremulous parkinsonism is generally considered a disease of the elderly, characterised by dominance of tremor over other motor manifestations, and by slower disease progression. Herein, we draw attention to a different clinical syndrome, benign tremulous parkinsonism of the young, which we have observed in Parkin disease

    Operator monotones, the reduction criterion and the relative entropy

    Get PDF
    We introduce the theory of operator monotone functions and employ it to derive a new inequality relating the quantum relative entropy and the quantum conditional entropy. We present applications of this new inequality and in particular we prove a new lower bound on the relative entropy of entanglement and other properties of entanglement measures.Comment: Final version accepted for publication, added references in reference [1] and [13
    corecore