615 research outputs found

    Persistent systemic microbial translocation, inflammation, and intestinal damage during Clostridioides difficile infection

    Get PDF
    Background. Clostridioides difficile infection (CDI) might be complicated by the development of nosocomial bloodstream infection (n-BSI). Based on the hypothesis that alteration of the normal gut integrity is present during CDI, we evaluated markers of microbial translocation, inflammation, and intestinal damage in patients with CDI. Methods. Patients with documented CDI were enrolled in the study. For each subject, plasma samples were collected at T0 and T1 (before and after CDI therapy, respectively), and the following markers were evaluated: lipopolysaccharide-binding protein (LPB), EndoCab IgM, interleukin-6, intestinal fatty acid binding protein (I-FABP). Samples from nonhospitalized healthy controls were also included. The study population was divided into BSI+/BSI- and fecal microbiota transplantation (FMT) +/FMT- groups, according to the development of n-BSI and the receipt of FMT, respectively. Results. Overall, 45 subjects were included; 8 (17.7%) developed primary n-BSI. Markers of microbial translocation and intestinal damage significantly decreased between T0 and T1, however, without reaching values similar to controls (P < .0001). Compared with BSI-, a persistent high level of microbial translocation in the BSI+ group was observed. In the FMT+ group, markers of microbial translocation and inflammation at T1 tended to reach control values. Conclusions. CDI is associated with high levels of microbial translocation, inflammation, and intestinal damage, which are still present at clinical resolution of CDI. The role of residual mucosal perturbation and persistence of intestinal cell damage in the development of n-BSI following CDI, as well as the possible effect of FMT in the restoration of mucosal integrity, should be further investigated

    Phenotypic and molecular characterization of Phaseolus vulgaris plants from non-cryopreserved and cryopreserved seeds

    Get PDF
    The objective of this work was to evaluate if cryostorage of Phaseolus vulgaris L. seeds induced variations in regenerated plants at the phenotypic and molecular levels. A series of agricultural traits was measured on plants grown from control, non-cryopreserved and cryopreserved seeds, and the genetic stability of plants of the second generation was analysed at selected microsatellite loci. The phenotype of the second generation plants was evaluated as well. No statistically significant phenotypic differences were observed for the parameters measured, neither in the first nor in the second generations. Averaging both treatments, about 76% of the seeds had germinated 10 days after sowing. At harvest we recorded plants with about 73 cm in height, 13 stem internodes, 25 fruits, 103 grains and 4 grains per fruit. One hundred seeds weighted about 26 g. The genetic analyses performed on the second generation plants using six nuclear Simple Sequences Repeats (SSR) markers revealed no changes in microsatellite length between control and cryopreserved samples, implying that there was no effect of seed liquid nitrogen exposure on genome integrity. The phenotypic and molecular results reported here confirm that cryostorage is an efficient and reliable technique to conserve P. vulgaris seeds and regenerate true-to-type plants

    Biochemical features of native red wines and genetic diversity of the corresponding grape varieties from Campania Region

    Get PDF
    Campania region has always been considered one of the most appreciated Italian districts for wine production. Wine distinctiveness arises from their native grapevines. To better define the chemical profile of Campania autochthonous red grape varieties, we analysed the phenolic composition of Aglianico di Taurasi, Aglianico del Vulture, Aglianico del Taburno, Piedirosso wines, and a minor native variety, Lingua di Femmina in comparison with Merlot and Cabernet Sauvignon, as reference cultivars. A genetic profiling was also carried out using microsatellite molecular markers with high polymorphic and unambiguous profiles. Principal component analysis applied to 72 wines based on the 18 biochemical parameters, explained 77.6% of the total variance and highlighted important biological entities providing insightful patterns. Moreover, comparison of SSR-based data with phenylpropanoid molecules exhibited a statistically significant correlation. Our approach might be reasonably adopted for future characterisations and traceability of grapevines and corresponding wines

    High AN1 variability and interaction with basic helix-loop-helix co-factors related to anthocyanin biosynthesis in potato leaves

    Get PDF
    AN1 is a regulatory gene that promotes anthocyanin biosynthesis in potato tubers and encodes a R2R3 MYB transcription factor. However, no clear evidence implicates AN1 in anthocyanin production in leaves, where these pigments might enhance environmental stress tolerance. In our study we found that AN1 displays intraspecific sequence variability in both coding/non-coding regions and in the promoter, and that its expression is associated with high anthocyanin content in leaves of commercial potatoes. Expression analysis provided evidence that leaf pigmentation is associated to AN1 expression and that StJAF13 acts as putative AN1 co-regulator for anthocyanin gene expression in leaves of the red leaf variety "Magenta Love", while a concomitant expression of StbHLH1 may contribute to anthocyanin accumulation in leaves of "Double Fun". Yeast two-hybrid experiments confirmed that AN1 interacts with StbHLH1 and StJAF13 and the latter interaction was verified and localized in the cell nucleus by bimolecular fluorescence complementation assays. In addition, transgenic tobacco (Nicotiana tabacum) overexpressing a combination of either AN1 with StJAF13 or AN1 with StbHLH1 showed deeper purple pigmentation with respect to AN1 alone. This further confirmed AN1/StJAF13 and AN1/StbHLH1 interactions. Our findings demonstrate that the classical loci identified for potato leaf anthocyanin accumulation correspond to AN1 and may represent an important step to expand our knowledge on the molecular mechanisms underlying anthocyanin biosynthesis in different plant tissues. This article is protected by copyright. All rights reserved

    Search based software engineering: Trends, techniques and applications

    Get PDF
    © ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version is available from the link below.In the past five years there has been a dramatic increase in work on Search-Based Software Engineering (SBSE), an approach to Software Engineering (SE) in which Search-Based Optimization (SBO) algorithms are used to address problems in SE. SBSE has been applied to problems throughout the SE lifecycle, from requirements and project planning to maintenance and reengineering. The approach is attractive because it offers a suite of adaptive automated and semiautomated solutions in situations typified by large complex problem spaces with multiple competing and conflicting objectives. This article provides a review and classification of literature on SBSE. The work identifies research trends and relationships between the techniques applied and the applications to which they have been applied and highlights gaps in the literature and avenues for further research.EPSRC and E

    Circular and sustainable space: Findings from hyperspectral imaging

    Get PDF
    Clean production and the ecological transition pose significant challenges for international space organizations, which are developing new strategies for recycling space waste products within a circular economy model. Successful recycling initiatives, which could encompass all or only parts of space waste management, would facilitate the reuse of materials that would otherwise be discarded. The present study aimed at testing a method for the identification and categorization of space waste to facilitate the definition of effective sorting and recycling operations in space. In more detail, the study investigated the potential of a sustainable, low-cost method based on hyperspectral imaging (HSI), employing HSI sensors operating in two spectral ranges—shortwave infrared (SWIR) and near-infrared (NIR)—to develop a classification model capable of identifying and sorting space waste for recycling. The findings demonstrate the advantages of using HSI techniques to identify, recognize, and classify various materials, thereby presenting a viable approach aligned with the circular model. Moreover, the proposed approach is non-invasive and non-destructive, eliminating the need for chemicals that could harm the environment. The technique may enable the differentiation of potentially valuable space waste from pollutants, contributing to sustainable waste management and the circular economy

    Use of SSR and retrotransposon-based markers to interpret the population structure of native grapevines from Southern Italy

    Get PDF
    Native grapevines are the quintessential ele- ments of Southern Italy winemaking, and genomic char- acterization plays a role of primary importance for preservation and sustainable use of these unexploited genetic resources. Among the various molecular techniques available, SSR and retrotransposons-based markers result to be the most valuable for cultivars and biotypes distinc- tiveness. A total of 62 accessions including 38 local grape cultivars were analyzed with 30 SSR, four REMAP and one IRAP markers to assess their genetic diversity and obtain a complete genomic profiling. The use of VrZAG79, VrZAG112, VVS2, VVMD25 and VVMD5 combined with retrotransposon-based markers proved to be the most dis- criminating and polymorphic markers for the rapid and unambiguous identification of minority grapevines from Campania region, which is considered one of the most appreciated Italian districts for wine production. Results revealed 58 SSR marker-specific alleles, 22 genotype- specific SSR alleles, and four REMAP and IRAP private bands. Cases of synonymy and homonymy were discov- ered. In conclusion, we provided evidences that the inte- grating SSR and retrotransposon-based markers is an effective strategy to assess the genetic diversity of autochthonous grapes, allowing their easy identification
    corecore