360 research outputs found
Gas Turbines for Power Generation on Board of Cruise Ships: A Possible Solution to Meet the New IMO Regulations?
AbstractIn order to reduce the environmental impact caused by merchant ships, the International Maritimes Organization is imposing new and stricter regulations on NOx and SOx emissions. Therefore, ships propelled by Internal Combustion Engines (ICEs) burning HFO must adopt abatement devices or switch to a cleaner fuel such as MGO. If the use of MGO is considered, a further and more drastic modification of the power system can be analyzed, namely the use of Gas Turbines (GTs) in place of ICEs. GTs are an attractive solution thanks to a reduced weight, size and NOx emissions, but are penalized by a lower electric efficiency. The case of a real cruise ship is considered in the present paper and a detailed quantification of the above mentioned differences is provided by simulating the ship operation for a reference trip
Evaluation of gas turbines as alternative energy production systems for a large cruise ship to meet new maritime regulations
As a consequence of the new and up-coming regulations imposed by the International Maritime Organization (IMO), polluting emissions produced by large ships are now under strict control. Moreover, specific areas called \u201cEmission Controlled Area\u201d (ECA), which request even lower pollutant emissions, will be extended. To face up to this issue, ships propelled by Internal Combustion Engines (ICEs) burning Heavy Fuel Oil (HFO) can be equipped with abatement devices such as scrubbers and Selective Catalytic Reactor systems. Along with these solutions, which seem to be the route ship-owners will prefer, other methods can be considered, such as the use of Marine Gas Oil (MGO): a more expensive fuel, but with lower sulphur content. The use of MGO allows users to consider a further and more drastic modification of the power system, namely the use of Gas Turbines (GTs) in place of ICEs. GTs, despite being less efficient, are much lighter, more compact, and can more easily reach low NOx emissions than ICEs. Even if these aspects are theoretically well known, there are still difficulties in finding studies reporting quantitative analysis (weight, dimensions, fuel consumption) that compare GT and ICE power systems employed on board. The present paper aims to provide these data by analyzing different solutions applied to a real case. Unlike other studies, the work is focused on a cruise ship rather than on a cargo ship, because a cruise ship's operation profile is more variable during the trip
Integrated waveguides and deterministically positioned nitrogen vacancy centers in diamond created by femtosecond laser writing
Diamond's nitrogen vacancy (NV) center is an optically active defect with
long spin coherence times, showing great potential for both efficient nanoscale
magnetometry and quantum information processing schemes. Recently, both the
formation of buried 3D optical waveguides and high quality single NVs in
diamond were demonstrated using the versatile femtosecond laser-writing
technique. However, until now, combining these technologies has been an
outstanding challenge. In this work, we fabricate laser written photonic
waveguides in quantum grade diamond which are aligned to within micron
resolution to single laser-written NVs, enabling an integrated platform
providing deterministically positioned waveguide-coupled NVs. This fabrication
technology opens the way towards on-chip optical routing of single photons
between NVs and optically integrated spin-based sensing
Comparison of energy transfer between Terbium and Ytterbium ions in glass and glass ceramic: Application in photovoltaic
The structural and optical properties of thin layers based on 70%SiO 2 –30%HfO 2 doped with different concentra- tion of rare earth ions (terbium and ytterbium) have been studied with a view to integrating them in a photovoltaic cell as a spectral conversion layer in order to improve its efficiency, by using down-conversion process. These thin films were synthesized by using sol gel technique and deposited on the pure silica substrate by dip-coating method. The DC layer can be placed on the front side of a solar cell and can enhance the current by converting ultraviolet (UV) photons into a large number of visible photons. In present study two series of samples are compared, the first series corresponds to samples treated at 900 °C (glass- S) while the second series concerns samples treated at 1000 °C (glass-ceramic- SC). These series are based on 70SiO 2 –30HfO 2 activated by different molar concentrations of rare earths [Tb + Yb]/[Si + Hf] = 7%, 9%, 12%, 15%, 17%, 19% and 21%. Photoluminescence results of reference samples (without Yb 3 + ) showed an emission from 5 D 4 to 7 F J ( J = 3, 4, 5, 6) level characteristic transitions of Tb 3 + , with a maximum peak in the green centered at 543.5 nm cor- responding to the 5 D 4 →7 F 5 transition. For the co-doped samples a clear NIR PL emission around 980 nm was detected, due to the 2 F 5/2 →2 F 7/2 transition of Yb 3 + ions. From luminescence decay curves of Tb 3 + maximum emission peak ( 7 F 5 →5 D 4 transition at 543.5 nm) we have identified the energy transfer efficiency. The quantum efficiency increases by increasing the total [Tb + Yb] concentration. The most significant yield was achieved with [Tb + Yb] = 19%, the maximum quantum transfer efficiency obtained was 190% for glass-ceramic samples and 161% for glassy one
Rare Earth-Activated Silica-Based Nanocomposites
Two different kinds of rare earth-activated glass-based nanocomposite photonic materials, which allow to tailor the spectroscopic properties of rare-earth ions: (i) Er3+-activated SiO2-HfO2 waveguide glass ceramic, and (ii) core-shell-like structures of Er3+-activated silica spheres obtained by a seed growth method, are presented
Sol–gel-derived photonic structures handling erbium ions luminescence
The sol–gel technique is a very flexible, relatively simple, and low-cost method to fabricate many different innovative photonic structures characterized by specific functionalities. During synthesis, starting from the molecular level, compounds or composites with well controlled composition can be obtained as thin films, powders or monoliths. These materials can be used to prepare such structures as waveguides, photonic crystals, coatings, and bulk glasses including spheres, rings and other geometries exploited in optical resonators fabrication. This article presents some results obtained by the authors in the field of the sol–gel-derived photonic structures. To emphasise the scientific and technological interest in this kind of systems and the versatility of the sol–gel route, the glass-based nano and micrometer scale range systems are discussed. Particularly, the following systems are described: silica–hafnia glass and glass–ceramic planar waveguides, nanosized tetraphosphates, and silica colloidal crystals. The attention is focused on the spectroscopic properties of Er3+-activated materials that due to the light emission can be used in the integrated optics area covering application in sensing, biomedical diagnostic, energy conversion, telecommunication, lighting, and photon management
Silver doping of silica-hafnia waveguides containing Tb3+/Yb3+ rare earths for downconversion in PV solar cells
The aim of this paper is to study the possibility to obtain an efficient downconverting waveguide which combines the quantum cutting properties of Tb3+/Yb3+ codoped materials with the optical sensitizing effects provided by silver doping. The preparation of 70SiO(2)-30HfO(2) glass and glass-ceramic waveguides by sol-gel route, followed by Ag doping by immersion in molten salt bath is reported. The films were subsequently annealed in air to induce the migration and/or aggregation of the metal ions. Results of compositional and optical characterization are given, providing evidence for the successful introduction of Ag in the films, while the photoluminescence emission is strongly dependent on the annealing conditions. These films could find potential applications as downshifting layers to increase the efficiency of PV solar cells. (C) 2016 Elsevier B.V. All rights reserved
Fabrication and characterization of Er+3 doped SiO2/SnO2 glass-ceramic thin films for planar waveguide applications
Glass-ceramics are a kind of two-phase materials constituted by nanocrystals embedded in a glass matrix and the respective volume fractions of crystalline and amorphous phase determine the properties of the glass-ceramics. Among these properties transparency is crucial in particular when confined structures, such as, dielectric optical waveguides, are considered. Moreover, the segregation of dopant rare-earth ions, like erbium, in low phonon energy crystalline medium makes these structures more promising in the development of waveguide amplifiers. Here we are proposing a new class of low phonon energy tin oxide semiconductor medium doped silicate based planar waveguides. Er3+ doped (100-x) SiO2- xSnO2 (x= 10, 20, 25 and 30mol%), glass-ceramic planar waveguide thin films were fabricated by a simple sol-gel processing and dip coating technique. XRD and HRTEM studies indicates the glass-ceramic phase of the film and the dispersion of ~4nm diameter of tin oxide nanocrystals in the amorphous phase of silica. The spectroscopic assessment indicates the distribution of the dopant erbium ions in the crystalline medium of tin oxide. The observed low losses, 0.5±0.2 dB/cm, at 1.54 ?m communication wavelength makes them a quite promising material for the development of high gain integrated optical amplifiers
- …