305 research outputs found

    Interaction of ITER-like ICRF antenna with Tore Supra plasmas: insight from modelling

    Get PDF
    The non-linear interaction of ion cyclotron resonance frequency (ICRF) waves with the plasma edge is one of the challenges faced by high power wave heating systems in next step devices. Such interaction is often associated with parallel RF electric fields excited by spurious parallel RF currents flowing on the antenna front face I -Experimental results 1 -ICRF antenna configurations. The prototype launcher ITER-lik

    Model for screening of resonant magnetic perturbations by plasma in a realistic tokamak geometry and its impact on divertor strike points

    Full text link
    This work addresses the question of the relation between strike-point splitting and magnetic stochasticity at the edge of a poloidally diverted tokamak in the presence of externally imposed magnetic perturbations. More specifically, ad-hoc helical current sheets are introduced in order to mimic a hypothetical screening of the external resonant magnetic perturbations by the plasma. These current sheets, which suppress magnetic islands, are found to reduce the amount of splitting expected at the target, which suggests that screening effects should be observable experimentally. Multiple screening current sheets reinforce each other, i.e. less current relative to the case of only one current sheet is required to screen the perturbation.Comment: Accepted in the Proceedings of the 19th International Conference on Plasma Surface Interactions, to be published in Journal of Nuclear Materials. Version 2: minor formatting and text improvements, more results mentioned in the conclusion and abstrac

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Reduction of RF sheaths potentials by compensation or suppression of parallel RF currents on ICRF antennae

    No full text
    Radio frequency (RF) sheaths are suspected of limiting the performance of present-day ion cyclotron range of frequencies (ICRFs) antennas over long pulses and should be minimized in future fusion devices. Within the simplest models, RF-sheath effects are quantified by the integral VRF = ∫ E∥ dl where the parallel RF field E∥ is linked with the slow wave. On 'long open field lines' with large toroidal extension on both sides of the antenna it was shown that VRF is excited by parallel RF currents j∥ flowing on the antenna structure. In this paper, the validity of this simple sheath theory is tested experimentally on the Tore Supra (TS) ITER-like antenna prototype (ILP), together with antenna simulation and post-processing codes developed to compute VRF. The predicted poloidal localization of high-|VRF| zones is confronted to that inferred from experimental data analysis. Surface temperature distribution on ILP front face, as well as ILP-induced modifications of RF coupling and hot spots on a magnetically connected lower hybrid current drive antenna, indicates local maxima of dc plasma potential in both the upper and lower parts of the ILP. This result, qualitatively conforming to VRF simulations, is interpreted in terms of j∥ flowing on ILP frame. Once the validation is done, such reliable theoretical models and numerical codes are then employed to provide predictive results. Indeed, we propose two ways to reduce |VRF| by acting on j∥ on the antenna front face. The first method, more adapted for protruding antennas, consists of avoiding the j∥ circulation on the antenna structure, by slotting the antenna frame on its horizontal edges and by partially cutting the Faraday screen rods. The second method, well suited for recessed antennas, consists of compensating j∥ of opposite signs along long flux tubes, with parallelepiped antennas aligned with (tilted) flux tubes. The different concepts are assessed numerically on a two-strap TS antenna phased [0, π] using near RF fields from the antenna code TOPICA. Simulations stress the need to suppress all current paths for j∥ to substantially reduce |VRF| over the whole antenna height

    Pure phosphotriesters as versatile ligands in transition metal catalysis: efficient hydrosilylation of ketones and diethylzinc addition to aldehydes

    No full text
    International audienceThis work aims to highlight the underrated role played by pure phosphotriester (or phosphate) ligands in catalysis, when compared to other phosphorus-containing donors such as phosphane oxides or phosphites. To probe this and to enlarge the very narrow catalytic scope of these Lewis bases, easily accessible mono-and bidentate phosphotriesters were tested as donors in two important transition metal-based catalytic transformations: the zinc-catalyzed hydrosilylation of ketones and the titanium-promoted diethylzinc addition to aldehydes. In both cases, the reactions were successful and the corresponding alcohols were obtained in high yields

    Reduction of RF sheaths potentials by compensation or suppression of parallel RF currents on ICRF antennae

    No full text
    Radio Frequency (RF) sheaths are suspected to limit the performance of present‐day Ion Cyclotron Range of Frequencies (ICRF) antennae over long pulses and should be minimized in future Fusion devices. Within the simplest models, RF sheath effects are quantified by the integral VRF = ∫ E//⋅dl where the parallel RF field E// is linked with the slow wave. On "long open field lines" with large toroidal extension on both sides of the antenna it was shown that VRF is excited by parallel RF currents j// flowing on the antenna structure. We thus propose two ways to reduce ∣VRF∣ by acting on j// on the antenna front face. The first method, more adapted for protruding antennae, consists in avoiding the j// circulation on the antenna structure, by slotting the antenna frame on its horizontal edges and by cutting partially the Faraday screen rods. The second method, well suited for recessed antennae, consists in compensating j// of opposite signs along long flux tubes, with parallelepiped antennae aligned with tilted flux tubes. The different concepts are assessed numerically on a 2‐strap Tore Supra antenna phased [0, π] using near RF fields from the antenna code TOPICA. Simulations stress the need to suppress all current paths for j// to reduce substantially ∣VRF∣ over the whole antenna heigh
    corecore