8 research outputs found

    Raman scattering studies of strain effects in (100) and (311)B GaAs 1-xBix epitaxial layers

    Get PDF
    We report room-temperature Raman studies of strained (100) and (311)B GaAs1-xBix epitaxial layers for x ≤ 0.039. The Raman spectra exhibit a two-mode behavior, as well as disorder-activated GaAs-like phonons. The experimental results show that the GaAs-like LO(Γ) mode experiences a strong composition-dependent redshift as a result of alloying. The peak frequency decreases linearly from the value for pure GaAs (∼293 cm-1) with the alloyed Bi fraction x and the introduced in-plane lattice strain ε, by Δ ω LO = Δ ω alloy-Δ ω strain. X-ray diffraction measurements are used to determine x and ε allowing Δ ω alloy to be decoupled and is estimated to be-12(±4) cm-1/x for (100) GaAs1- xBix. Δ ω LO is measured to be roughly double for samples grown on (311)B-oriented substrates to that of (100) GaAs. This large difference in redshift is accounted for by examining the Bi induced strain, effects from alloying, and defects formed during high-index (311)B crystal growth

    Entanglement and coherence in a system of two atoms in the presence of Kerr medium and field dissipation

    No full text
    In the present manuscript, we investigate qualitatively the quantum entanglement and coherence in two atoms coupled to a quantized field in the existence of Kerr medium and Ising interaction. We explore the effects of the atom–atom (A–A) interaction and field nonlinearity on the dynamics of quantumness measures by examining the A–A concurrence, von Neumann entropy, l1 norm coherence and Mandel’s parameter. We also illustrate the relations between the information quantifiers in the presence and absence of field dissipation

    Structural, Optical and Electrical Properties of Self-Assembled InAs Quantum Dots Based p–i–n Devices Grown on GaAs Substrate by Molecular Beam Epitaxy for Telecommunication Applications

    No full text
    This work aims to investigate the structural, electrical, and optical properties of InAs quantum dots (QDs) grown by Molecular Beam Epitaxy on GaAs substrates. As-made samples were thoroughly characterized using different techniques, including Atomic Force Microscopy (AFM), X-ray diffraction (XRD), and highresolution X-ray diffraction (HRXRD). The patterns of HRXRD revealed an excellent crystallinity of the nanostructure with a maximum diameter of 25 nm as demonstrated by AFM images. The photoluminescence (PL) spectra showed two distinct bands centered at 835 and 1210 nm, and the intensity of these wavelengths increased with decreasing temperature. A redshift accompanied by a decrease in the FWHM as a function of temperature was observed as a consequence of the thermal escape of carriers. The Ideality factor (n), built-in potential energy, and series resistance at different temperatures were also determined from current-voltage characteristics curves

    DFT, ADMET and Molecular Docking Investigations for the Antimicrobial Activity of 6,6′-Diamino-1,1′,3,3′-tetramethyl-5,5′-(4-chlorobenzylidene)bis[pyrimidine-2,4(1H,3H)-dione]

    No full text
    Heterocyclic compounds, including pyrimidine derivatives, exhibit a broad variety of biological and pharmacological activities. In this paper, a previously synthesized novel pyrimidine molecule is proposed, and its pharmaceutical properties are investigated. Computational techniques such as the density functional theory, ADMET evaluation, and molecular docking were applied to elucidate the chemical nature, drug likeness and antibacterial function of molecule. The viewpoint of quantum chemical computations revealed that the molecule was relatively stable and has a high electrophilic nature. The contour maps of HOMO-LUMO and molecular electrostatic potential were analyzed to illustrate the charge density distributions that could be associated with the biological activity. Natural bond orbital (NBO) analysis revealed details about the interaction between donor and acceptor within the bond. Drug likeness and ADMET analysis showed that the molecule possesses the agents of safety and the effective combination therapy as pharmaceutical drug. The antimicrobial activity was investigated using molecular docking. The investigated molecule demonstrated a high affinity for binding within the active sites of antibacterial and antimalarial proteins. The high affinity of the antibacterial protein was proved by its low binding energy (−7.97 kcal/mol) and a low inhibition constant value (1.43 µM). The formation of four conventional hydrogen bonds in ligand–protein interactions confirmed the high stability of the resulting complexes. When compared to known standard drugs, the studied molecule displayed a remarkable antimalarial activity, as indicated by higher binding affinity (B.E. −5.86 kcal/mol & Ki = 50.23 M). The pre-selected molecule could be presented as a promising drug candidate for the development of novel antimicrobial agents

    Optical properties of self-assembled InAs quantum dots based P–I–N structures grown on GaAs and Si substrates by Molecular Beam Epitaxy

    No full text
    Extensive work on InAs quantum dots grown on GaAs substrates has been reported in the literature. However, research in the use of different substrate materials such as silicon to achieve an ideal and full integration of photonic and electronic systems is still a challenge. In this work we have investigated the effect of the substrate material (Si and GaAs) and strain reducing layer on the optical properties of InAs quantum dots for possible applications in laser devices grown by Molecular Beam Epitaxy. Two InAs quantum dots structures with similar active regions grown on GaAs and Si substrates using strain reducing layer consisting of InAs QDs/6 nm In0.15Ga0.85As have been investigated. Atomic Force Microscopy, Transmission Electron Microscopy, and photoluminescence have been used for the characterization of the samples. We have observed a red shift of the InAs QD photoluminescence peak energy for the sample grown on Si substrate as compared to the sample grown on GaAs substrate, which was associated with residual biaxial strain from the Si/GaAs heterointerface. This red-shift of the photoluminescence peak energy is accompanied by a broadening of the photoluminescence spectrum from ∼31 meV to a value of ∼46 meV. This broadening is attributed to the quantum dots size inhomogeneity increase for samples grown on Si substrate. This result open new insights for the controlling the emission of InAs quantum dots for photonic devices integration using Si substrates
    corecore