2,082 research outputs found

    Generation of slow intense optical solitons in a resonance photonic crystal

    Full text link
    We demonstrate interesting and previously unforeseen properties of a pair of gap solitons in a resonant photonic crystal which are predicted and explained in a physically transparent form using both analytical and numerical methods. The most important result is the fact that an oscillating gap soliton created by the presence of a localized population inversion inside the crystal can be manipulated by means of a proper choice of bit rate, phase and amplitude modulation. Developing this idea, we are able to obtain qualitatively different regimes of a resonant photonic crystal operation. In particular, a noteworthy observation is that both the delay time and amplitude difference must exceed a certain level to ensure effective control over the soliton dynamics

    Dynamical Mass Generation in a Finite-Temperature Abelian Gauge Theory

    Get PDF
    We write down the gap equation for the fermion self-energy in a finite-temperature abelian gauge theory in three dimensions. The instantaneous approximation is relaxed, momentum-dependent fermion and photon self-energies are considered, and the corresponding Schwinger-Dyson equation is solved numerically. The relation between the zero-momentum and zero-temperature fermion self-energy and the critical temperature T_c, above which there is no dynamical mass generation, is then studied. We also investigate the effect which the number of fermion flavours N_f has on the results, and we give the phase diagram of the theory with respect to T and N_f.Comment: 20 LaTeX pages, 4 postscript figures in a single file, version to appear in Physical Review

    Non-trivial Infrared Structure in (2+1)-dimensional Quantum Electrodynamics

    Get PDF
    We show that the gauge-fermion interaction in multiflavour (2+1)(2+1)-dimensional quantum electrodynamics with a finite infrared cut-off is responsible for non-fermi liquid behaviour in the infrared, in the sense of leading to the existence of a non-trivial fixed point at zero momentum, as well as to a significant slowing down of the running of the coupling at intermediate scales as compared with previous analyses on the subject. Both these features constitute deviations from fermi-liquid theory. Our discussion is based on the leading- 1/N1/N resummed solution for the wave-function renormalization of the Schwinger-Dyson equations . The present work completes and confirms the expectations of an earlier work by two of the authors (I.J.R.A. and N.E.M.) on the non-trivial infrared structure of the theory.Comment: 10 pages (LaTex), 5 figures (Postscript

    Derivative Expansion and the Effective Action for the Abelian Chern-Simons Theory at Higher Orders

    Get PDF
    We study systematically the higher order corrections to the parity violating part of the effective action for the Abelian Chern-Simons theory in 2+1 dimensions, using the method of derivative expansion. We explicitly calculate the parity violating parts of the quadratic, cubic and the quartic terms (in fields) of the effective action. We show that each of these actions can be summed, in principle, to all orders in the derivatives. However, such a structure is complicated and not very useful. On the other hand, at every order in the powers of the derivatives, we show that the effective action can also be summed to all orders in the fields. The resulting actions can be expressed in terms of the leading order effective action in the static limit. We prove gauge invariance, both large and small of the resulting effective actions. Various other features of the theory are also brought out.Comment: 36 page
    • …
    corecore