1,048 research outputs found

    Fast b-tagging at the high-level trigger of the ATLAS experiment in LHC Run 3

    Get PDF
    The ATLAS experiment relies on real-time hadronic jet reconstruction and b-tagging to record fully hadronic events containing b-jets. These algorithms require track reconstruction, which is computationally expensive and could overwhelm the high-level-trigger farm, even at the reduced event rate that passes the ATLAS first stage hardware-based trigger. In LHC Run 3, ATLAS has mitigated these computational demands by introducing a fast neural-network-based b-tagger, which acts as a low-precision filter using input from hadronic jets and tracks. It runs after a hardware trigger and before the remaining high-level-trigger reconstruction. This design relies on the negligible cost of neural-network inference as compared to track reconstruction, and the cost reduction from limiting tracking to specific regions of the detector. In the case of Standard Model HH → bb̅bb̅, a key signature relying on b-jet triggers, the filter lowers the input rate to the remaining high-level trigger by a factor of five at the small cost of reducing the overall signal efficiency by roughly 2%

    Differential tt¯cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb−1 of ATLAS data

    Get PDF
    Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 TeV proton–proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum (pT) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the tt¯ → WWbb¯ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have pT> 500 GeV and pT> 350 GeV, respectively, is 331 ± 3(stat.) ± 39(syst.) fb. This is approximately 20% lower than the prediction of 398−49+48 fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is 1.94 ± 0.02(stat.) ± 0.25(syst.) pb. This agrees with the NNLO prediction of 1.96−0.17+0.02 pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators. [Figure not available: see fulltext.]

    Search for non-resonant Higgs boson pair production in the 2b+2â„“+ETmiss final state in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    A search for non-resonant Higgs boson pair (HH) production is presented, in which one of the Higgs bosons decays to a b-quark pair (bb¯) and the other decays to WW*, ZZ*, or τ+τ−, with in each case a final state with ℓ+ℓ−+ neutrinos (ℓ = e, μ). The analysis targets separately the gluon-gluon fusion and vector boson fusion production modes. Data recorded by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb−1, are used in this analysis. Events are selected to have exactly two b-tagged jets and two leptons with opposite electric charge and missing transverse momentum in the final state. These events are classified using multivariate analysis algorithms to separate the HH events from other Standard Model processes. No evidence of the signal is found. The observed (expected) upper limit on the cross-section for non-resonant Higgs boson pair production is determined to be 9.7 (16.2) times the Standard Model prediction at 95% confidence level. The Higgs boson self-interaction coupling parameter κλ and the quadrilinear coupling parameter κ2V are each separately constrained by this analysis to be within the ranges [−6.2, 13.3] and [−0.17, 2.4], respectively, at 95% confidence level, when all other parameters are fixed

    Search for top-philic heavy resonances in pp collisions at s=13 TeV with the ATLAS detector

    Get PDF
    A search for the associated production of a heavy resonance with a top-quark or a top-antitop-quark pair, and decaying into a tt¯ pair is presented. The search uses the data recorded by the ATLAS detector in pp collisions at s=13 TeV at the Large Hadron Collider during the years 2015–2018, corresponding to an integrated luminosity of 139 fb-1. Events containing exactly one electron or muon are selected. The two hadronically decaying top quarks from the resonance decay are reconstructed using jets clustered with a large radius parameter of R=1. The invariant mass spectrum of the two top quark candidates is used to search for a resonance signal in the range of 1.0 TeV to 3.2 TeV. The presence of a signal is examined using an approach with minimal model dependence followed by a model-dependent interpretation. No significant excess is observed over the background expectation. Upper limits on the production cross section times branching ratio at 95% confidence level are provided for a heavy Z′ boson based on a simplified model, for Z′ mass between 1.0 TeV and 3.0 TeV. The observed (expected) limits range from 21 (14) fb to 119 (86) fb depending on the choice of model parameters

    Search for a CP-odd Higgs boson decaying into a heavy CP-even Higgs boson and a Z boson in the ℓ+ℓ−tt¯ and νν¯bb¯ final states using 140 fb<sup>−1</sup> of data collected with the ATLAS detector

    Get PDF
    A search for a heavy CP-odd Higgs boson, A, decaying into a Z boson and a heavy CP-even Higgs boson, H, is presented. It uses the full LHC Run 2 dataset of pp collisions at s = 13 TeV collected with the ATLAS detector, corresponding to an integrated luminosity of 140 fb−1. The search for A → ZH is performed in the ℓ+ℓ−tt¯ and νν¯bb¯ final states and surpasses the reach of previous searches in different final states in the region with mH > 350 GeV and mA > 800 GeV. No significant deviation from the Standard Model expectation is found. Upper limits are placed on the production cross-section times the decay branching ratios. Limits with less model dependence are also presented as functions of the reconstructed m(tt¯) and m(bb¯) distributions in the ℓ+ℓ−tt¯ and νν¯bb¯ channels, respectively. In addition, the results are interpreted in the context of two-Higgs-doublet models

    Combination of searches for invisible decays of the Higgs boson using 139 fb−1 of proton-proton collision data at √s = 13 TeV collected with the ATLAS experiment

    Get PDF
    Many extensions of the Standard Model predict the production of dark matter particles at the LHC. Sufficiently light dark matter particles may be produced in decays of the Higgs boson that would appear invisible to the detector. This Letter presents a statistical combination of searches for H → invisible decays where multiple production modes of the Standard Model Higgs boson are considered. These searches are performed with the ATLAS detector using 139 fb−1 of proton–proton collisions at a centre–of–mass energy of √s = 13 TeV at the LHC. In combination with the results at √s = 7 TeV and 8 TeV, an upper limit on the H → invisible branching ratio of 0.107 (0.077) at the 95% confidence level is observed (expected). These results are also interpreted in the context of models where the 125 GeV Higgs boson acts as a portal to dark matter, and limits are set on the scattering cross-section of weakly interacting massive particles and nucleons

    A precise measurement of the Z-boson double-differential transverse momentum and rapidity distributions in the full phase space of the decay leptons with the ATLAS experiment at s=8 TeV

    Get PDF
    This paper presents for the first time a precise measurement of the production properties of the Z boson in the full phase space of the decay leptons. This is in contrast to the many previous precise unfolded measurements performed in the fiducial phase space of the decay leptons. The measurement is obtained from proton–proton collision data collected by the ATLAS experiment in 2012 at s=8 TeV at the LHC and corresponding to an integrated luminosity of 20.2 fb-1. The results, based on a total of 15.3 million Z-boson decays to electron and muon pairs, extend and improve a previous measurement of the full set of angular coefficients describing Z-boson decay. The double-differential cross-section distributions in Z-boson transverse momentum pT and rapidity y are measured in the pole region, defined as 80<mℓℓ<100 GeV, over the range |y|<3.6. The total uncertainty of the normalised cross-section measurements in the peak region of the pT distribution is dominated by statistical uncertainties over the full range and increases as a function of rapidity from 0.5–1.0% for |y|<2.0 to 2-7% at higher rapidities. The results for the rapidity-dependent transverse momentum distributions are compared to state-of-the-art QCD predictions, which combine in the best cases approximate N4LL resummation with N3LO fixed-order perturbative calculations. The differential rapidity distributions integrated over pT are even more precise, with accuracies from 0.2–0.3% for |y|<2.0 to 0.4–0.9% at higher rapidities, and are compared to fixed-order QCD predictions using the most recent parton distribution functions. The agreement between data and predictions is quite good in most cases

    Measurements of the Higgs boson inclusive and differential fiducial cross-sections in the diphoton decay channel with pp collisions at s root = 13 TeV with the ATLAS detector

    Get PDF
    Published: August 2, 2022A measurement of inclusive and differential fiducial cross-sections for the production of the Higgs boson decaying into two photons is performed using 139 fb−1 of proton-proton collision data recorded at s√ = 13 TeV by the ATLAS experiment at the Large Hadron Collider. The inclusive cross-section times branching ratio, in a fiducial region closely matching the experimental selection, is measured to be 67 ± 6 fb, which is in agreement with the state-of-the-art Standard Model prediction of 64 ± 4 fb. Extrapolating this result to the full phase space and correcting for the branching ratio, the total cross-section for Higgs boson production is estimated to be 58 ± 6 pb. In addition, the cross-sections in four fiducial regions sensitive to various Higgs boson production modes and differential cross-sections as a function of either one or two of several observables are measured. All the measurements are found to be in agreement with the Standard Model predictions. The measured transverse momentum distribution of the Higgs boson is used as an indirect probe of the Yukawa coupling of the Higgs boson to the bottom and charm quarks. In addition, five differential cross-section measurements are used to constrain anomalous Higgs boson couplings to vector bosons in the Standard Model effective field theory framework.The ATLAS collaboration, G. Aad ... P.Jackson ... A.X.Y Kong ... H.Potti ... T.A. Ruggeri ... A.S.Sharma ... E.X.L.Ting ... M.J.White ... et al

    Search for pair production of squarks or gluinos decaying via sleptons or weak bosons in final states with two same-sign or three leptons with the ATLAS detector

    Get PDF
    A search for pair production of squarks or gluinos decaying via sleptons or weak bosons is reported. The search targets a final state with exactly two leptons with same-sign electric charge or at least three leptons without any charge requirement. The analysed data set corresponds to an integrated luminosity of 139 fb−1 of proton-proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Multiple signal regions are defined, targeting several SUSY simplified models yielding the desired final states. A single control region is used to constrain the normalisation of the WZ + jets background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of several supersymmetric models featuring R-parity conservation or R-parity violation, yielding exclusion limits surpassing those from previous searches. In models considering gluino (squark) pair production, gluino (squark) masses up to 2.2 (1.7) TeV are excluded at 95% confidence level

    Search for resonant production of dark quarks in the dijet final state with the ATLAS detector

    Get PDF
    This paper presents a search for a new Z′ resonance decaying into a pair of dark quarks which hadronise into dark hadrons before promptly decaying back as Standard Model particles. This analysis is based on proton-proton collision data recorded at s = 13 TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb−1. After selecting events containing large-radius jets with high track multiplicity, the invariant mass distribution of the two highest-transverse-momentum jets is scanned to look for an excess above a data-driven estimate of the Standard Model multijet background. No significant excess of events is observed and the results are thus used to set 95% confidence-level upper limits on the production cross-section times branching ratio of the Z′ to dark quarks as a function of the Z′ mass for various dark-quark scenarios
    • …
    corecore