73 research outputs found

    In silico evaluation of ultrafiltration and nanofiltration membrane cascades for continuous fractionation of protein hydrolysate from tuna processing byproduct

    Get PDF
    The present work proposes the design of cascades that integrate ultrafiltration (UF) and nanofiltration (NF) membranes to separate the different protein fractions from the protein hydrolysate obtained after hydrolysis of tuna byproducts. Experimental data (permeate flux and rejection of protein fractions under different applied pressures) previously obtained and published by this research group were fitted to empirical models, which were the basis for a process simulation model. High recovery rates (0.9) in the UF stages implied high process yields by reduced desired fraction losses, while similar recovery rates in the NF stages were required for high product purity. However, the applied pressures were not so influential over the performance of the system. Optimization problems were solved to identify the optimal design and operation conditions to maximize the product purity or the process yield. Maximal purity of the preferred 1-4 kDa fraction (49.3% from 19.0% in feed stream) obtained by the configuration with 3 UF stages and another 3 NF stages implied 2 and 5 bar pressures applied in the UF and NF stages, respectively, while 0.9 was the optimal recovery rate value for all the stages. These maximal purity conditions resulted in 62.6% process yield, defined as the percentage of the 1-4 kDa fraction in the feed stream recovered in the product stream. In addition, multiobjective optimization of the process was also carried out to obtain the Pareto graphs that represent the counterbalance between maximal yields and purities

    Studying sporadic and familial Alzheimer's disease on iPSC-derived hippocampal and cortical neurons: effect of APOE and Presenilin1

    Get PDF
    Alzheimer's disease (AD) is pathologically characterised by the presence of amyloid-beta plaques, neurofibrillary tangles containing hyperphosphorylated Tau protein, neuroinflammation and neuronal death leading to progressive cognitive impairment. The ¿4 allele of the gene encoding apolipoprotein E (APOE), which is mainly expressed in glial cells, is the strongest genetic risk factor for sporadic AD. Increasing evidence has shown that APOE4 may disrupt normal astrocyte activity, potentially contributing to AD pathology, but the impact of different APOE alleles on astrocyte differentiation, maturation and function is not yet fully understood. To go in depth on these questions, we obtained induced pluripotent stem cells (iPSCs) from fibroblasts of AD patients carrying ¿3 and ¿4 alleles (in homozygosis) and from healthy patients. We also used gene-edited iPSC lines homozygous for the main APOE variants and an APOE knock-out line. iPSC-derived human astrocytes were generated by establishing a differentiation protocol through the consecutive addition of small molecules and growth factors, and the expression of typical markers (GFAP, GLT1, AQP4 and S100beta) and APOE was analysed. In addition, astrocytes exhibited functional features like glutamate uptake capacity and calcium waves production. They also responded to an inflammatory stimulus (IL-1beta and TNF-alpha) or to the presence of amyloid-beta 1-42 peptide by changing their morphology and increasing the expression levels of pro-inflammatory factors and cytokines. Our results shed light on the potential dual role of APOE polymorphism and the individual¿s genetic background in favouring or perhaps preventing AD pathology

    ANALYSING THE MOLECULAR, MORPHOLOGICAL AND FUNCTIONAL PROFILE OF iPSC-DERIVED ASTROCYTES FROM ALZHEIMER'S DISEASE PATIENTS

    Get PDF
    Comunicación presentada en Global Summit on Neurodegenerative Diseases NEURO 2020/22The ε4 allele of the gene encoding apolipoprotein E (APOE), which is mainly expressed in glial cells, is the strongest genetic risk factor for sporadic AD. Increasing evidence has shown that APOE4 may disrupt normal astrocyte activity, potentially contributing to AD pathology, but the impact of different APOE alleles on astrocyte maturation and function as well as their inflammatory profile is not yet fully understood. To answer these questions, we obtained induced pluripotent stem cells (iPSCs) from fibroblasts of AD patients carrying ε3 and ε4 alleles (in homozygosis) and from healthy patients. We also used gene-edited iPSC lines homozygous for the main APOE variants and an APOE knock-out line. iPSC-derived human astrocytes were generated through the consecutive addition of small molecules and growth factors to the culture medium, and the expression of typical markers (GFAP, GLT1, AQP4 and S100beta) was analysed. In addition, astrocytes exhibited functional features like glutamate uptake capacity and calcium waves. They also responded to an inflammatory stimulus (IL-1beta and TNF-alpha) or to the presence of amyloid-beta 1-42 peptide by changing their morphology and increasing the expression levels of pro-inflammatory factors and cytokines. Our results shed light on the potential dual role of APOE polymorphism and the individual's genetic background in favouring or perhaps preventing AD pathology

    EXPLORING THE IMPACT OF APOE POLYMORPHISM ON THE MOLECULAR, MORPHOLOGICAL AND FUNCTIONAL PROFILE OF iPSC-DERIVED ASTROCYTES FROM ALZHEIMER'S PATIENTS

    Get PDF
    Comunicación presentada a FENS Forum 2022Alzheimer¿s disease (AD) is pathologically characterised by the presence of amyloid-beta plaques, neurofibrillary tangles containing hyperphosphorylated Tau protein, neuroinflammation and neuronal death leading to progressive cognitive impairment. The ¿4 allele of the gene encoding apolipoprotein E (APOE), which is mainly expressed in glial cells, is the strongest genetic risk factor for sporadic AD. Increasing evidence has shown that APOE4 may disrupt normal astrocyte activity, potentially contributing to AD pathology, but the impact of different APOE alleles on astrocyte differentiation, maturation and function is not yet fully understood. To go in depth on these questions, we obtained induced pluripotent stem cells (iPSCs) from fibroblasts of AD patients carrying ¿3 and ¿4 alleles (in homozygosis) and from healthy patients. We also used gene-edited iPSC lines homozygous for the main APOE variants and an APOE knock-out line. iPSC-derived human astrocytes were generated by establishing a differentiation protocol through the consecutive addition of small molecules and growth factors, and the expression of typical markers (GFAP, GLT1, AQP4 and S100beta) and APOE was analysed. In addition, astrocytes exhibited functional features like glutamate uptake capacity and calcium waves production. They also responded to an inflammatory stimulus (IL-1beta and TNF-alpha) or to the presence of amyloid-beta 1-42 peptide by changing their morphology and increasing the expression levels of pro-inflammatory factors and cytokines. Our results shed light on the potential dual role of APOE polymorphism and the individual¿s genetic background in favouring or perhaps preventing AD pathology

    Adenosine A2A receptors modulate BDNF both in normal conditions and in experimental models of Huntington’s disease

    Get PDF
    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, enhances synaptic transmission and regulates neuronal proliferation and survival. Functional interactions between adenosine A2A receptors (A2ARs) and BDNF have been recently reported. In this article, we report some recent findings from our group showing that A2ARs regulate both BDNF functions and levels in the brain. Whereas BDNF (10 ng/ml) increased the slope of excitatory postsynaptic field potentials (fEPSPs) in hippocampal slices from wild-type (WT) mice, it was completely ineffective in slices taken from A2AR knock-out (KO) mice. Furthermore, enzyme immunoassay studies showed a significant reduction in hippocampal BDNF levels in A2AR KO vs. WT mice. Having found an even marked reduction in the striatum of A2AR KO mice, and as both BDNF and A2ARs have been implicated in the pathogenesis of Huntington’s disease (HD), an inherited striatal neurodegenerative disease, we then evaluated whether the pharmacological blockade of A2ARs could influence striatal levels of BDNF in an experimental model of HD-like striatal degeneration (quinolinic acid-lesioned rats) and in a transgenic mice model of HD (R6/2 mice). In both QA-lesioned rats and early symptomatic R6/2 mice (8 weeks), the systemic administration of the A2AR antagonist SCH58261 significantly reduced striatal BDNF levels. These results indicate that the presence and the tonic activation of A2ARs are necessary to allow BDNF-induced potentiation of synaptic transmission and to sustain a normal BDNF tone. The possible functional consequences of reducing striatal BDNF levels in HD models need further investigation

    Una década de investigación documental sobre cienciometría en España: análisis de los artículos de la base de datos ISOC (2000-2009)

    Get PDF
    The primary purpose of this study is to define the evolution of papers on Scientometrics in Spain during the period 2000-2009 from the Information Science perspective as applied to scientific research. The analysis focuses on the areas of Social Sciences and Humanities, using records selected from the ISOC database. The results are analyzed from different perspectives: authors, organizations, geographic areas, languages, journals, classifications and descriptors. Finally, we discuss possible ways for expanding research and then highlight some conclusions regarding scientific documentation in Spain during the first decade of the 21st century.El propósito fundamental del presente trabajo es definir la evolución de los artículos sobre cienciometría en España durante el período 2000-2009 desde la perspectiva de la documentación aplicada a la investigación científica. El análisis se centra en las áreas de las ciencias sociales y de las humanidades, a partir de los registros seleccionados de la base de datos ISOC. En los resultados, se analizan los artículos desde diferentes perspectivas: autores, organizaciones, áreas geográficas, idiomas, revistas, clasificaciones y descriptores. Finalmente, se comentan las posibles vías de ampliación de la investigación y se destacan algunas conclusiones sobre la documentación científica en España durante la primera década del siglo XXI

    Holistic treatment response: an international expert panel definition and criteria for a new paradigm in the assessment of clinical outcomes of spinal cord stimulation

    Get PDF
    Background: Treatment response to spinal cord stimulation (SCS) is focused on the magnitude of effects on pain intensity. However, chronic pain is a multidimensional condition that may affect individuals in different ways and as such it seems reductionist to evaluate treatment response based solely on a unidimensional measure such as pain intensity. Aim: The aim of this article is to add to a framework started by IMMPACT for assessing the wider health impact of treatment with SCS for people with chronic pain, a ”holistic treatment response”. Discussion: Several aspects need consideration in the assessment of a holistic treatment response. SCS device data and how it relates to patient outcomes, is essential to improve the understanding of the different types of SCS, improve patient selection, long-term clinical outcomes, and reproducibility of findings. The outcomes to include in the evaluation of a holistic treatment response need to consider clinical relevance for patients and clinicians. Assessment of the holistic response combines two key concepts of patient assessment: (1) patients level of baseline (pre-treatment) unmet need across a range of health domains; (2) demonstration of patient-relevant improvements in these health domains with treatment. The minimal clinical important difference (MCID) is an established approach to reflect changes after a clinical intervention that are meaningful for the patient and can be used to identify treatment response to each individual domain. A holistic treatment response needs to account for MCIDs in all domains of importance for which the patient presents dysfunctional scores pre-treatment. The number of domains included in a holistic treatment response may vary and should be considered on an individual basis. Physiologic confirmation of therapy delivery and utilisation should be included as part of the evaluation of a holistic treatment response and is essential to advance the field of SCS and increase transparency and reproducibility of the findings
    corecore