3,310 research outputs found
Flexible substrate for printed wiring
A very flexible substrate for printed wiring is disclosed which is composed of a blend of phenoxy resin-polyisocyanate-brominated epoxy resin in which the equivalent ration of the functional groups is hydroxyl grouped: isocyanate group: epoxy group = 1:0.2 to 2:0.5 to 3. The product has outstanding solder resistance and is applied to metal without using adhesives
Flexible composite film for printed circuit board
A flexible printed circuit for a printed circuit board in which layers of reaction product composed of a combination of phenoxy resin - polyisocyanate - brominated epoxy resin, and in which the equivalent ratio of those functional groups is hydroxyl group: isocyanate group: epoxy group - 1 : 0.2 to 2 : 0.5 to 3 are laminated on at least one side of saturated polyester film is discussed
Structure and thermodynamics of colloid-polymer mixtures: a macromolecular approach
The change of the structure of concentrated colloidal suspensions upon
addition of non-adsorbing polymer is studied within a two-component,
Ornstein-Zernicke based liquid state approach. The polymers' conformational
degrees of freedom are considered and excluded volume is enforced at the
segment level. The polymer correlation hole, depletion layer, and excess
chemical potentials are described in agreement with polymer physics theory in
contrast to models treating the macromolecules as effective spheres. Known
depletion attraction effects are recovered for low particle density, while at
higher densities novel many-body effects emerge which become dominant for large
polymers.Comment: 7 pages, 4 figures; to be published in Europhys. Let
Quantitation of intracellular NAD(P)H can monitor an imbalance of DNA single strand break repair in base excision repair deficient cells in real time
DNA single strand breaks (SSBs) are one of the most frequent DNA lesions in genomic DNA generated either by oxidative stress or during the base excision repair pathways. Here we established a new real-time assay to assess an imbalance of DNA SSB repair by indirectly measuring PARP-1 activation through the depletion of intracellular NAD(P)H. A water-soluble tetrazolium salt is used to monitor the amount of NAD(P)H in living cells through its reduction to a yellow colored water-soluble formazan dye. While this assay is not a direct method, it does not require DNA extraction or alkaline treatment, both of which could potentially cause an artifactual induction of SSBs. In addition, it takes only 4 h and requires less than a half million cells to perform this measurement. Using this assay, we demonstrated that the dose- and time-dependent depletion of NAD(P)H in XRCC1-deficient CHO cells exposed to methyl methanesulfonate. This decrease was almost completely blocked by a PARP inhibitor. Furthermore, methyl methanesulfonate reduced NAD(P)H in PARP-1+/+cells, whereas PARP-1¿/¿ cells were more resistant to the decrease in NAD(P)H. These results indicate that the analysis of intracellular NAD(P)H level using water-soluble tetrazolium salt can assess an imbalance of SSB repair in living cells in real time
Genetic structure of Ilyoplax delsmani (Crustacea: Decapoda: Brachyura: Dotillidae) on the western Indonesian waters
The 5th International Conference on Biosciences 02/08/2023 - 03/08/2023 Bogor, IndonesiaEstuarine crab disperses passively to different areas during their larval stage through sea currents. Ilyoplax delsmani, one of the estuarine crabs, is widely distributed in the Indo-Malaysia Archipelago. The present study aims to discern the genetic structure of Ilyoplax delsmani in the western part of Indonesia. Specimens were collected from three sites, i.e. one site in Kalimantan and two sites in Java Island. We analyzed the genetic structure of I. delsmani with COI gene using MEGA-X, DNASP v6.12.03, Arlequin v3.5.2.2., and Network v10.2. The constructed phylogenetic tree with MEGA-X with maximum likelihood (ML) using Kimura 2 parameter based on the COI gene revealed two distinct clades, i.e., Kalimantan_5133-Java_5135 as Clade 1 and Java_5136 as Clade 2. The genetic distance within the clade range from 0.2% to 2.2%, meanwhile the distance between the clades is approximately 19.3%–20.7%. Moreover, the haplotype network and FST values calculated between pairs of localities generate a congruent result with the phylogenetic tree. Through calculation using MEGA-X, we estimate that the divergence time between both clades is approximately 42.49 mya, aligning with the middle Eocene period. Hence, we deduce that both clades represent distinct species
Accurate description of bulk and interfacial properties in colloid-polymer mixtures
Large-scale Monte Carlo simulations of a phase-separating colloid-polymer
mixture are performed and compared to recent experiments. The approach is based
on effective interaction potentials in which the central monomers of
self-avoiding polymer chains are used as effective coordinates. By
incorporating polymer nonideality together with soft colloid-polymer repulsion,
the predicted binodal is in excellent agreement with recent experiments. In
addition, the interfacial tension as well as the capillary length are in
quantitative agreement with experimental results obtained at a number of points
in the phase-coexistence region, without the use of any fit parametersComment: 4 pages, 4 figure
Reentrant glass transition in a colloid-polymer mixture with depletion attractions
Performing light scattering experiments we show that introducing short-ranged
attraction to a colloidal suspension of nearly hard spheres by addition of free
polymer produces new glass transition phenomena. We observe a dramatic
acceleration of the density fluctuations amounting to the melting of a
colloidal glass. Increasing the strength of the attractions the system freezes
into another nonergodic state sharing some qualitative features with gel states
occurring at lower colloid packing fractions. This reentrant glass transition
is in qualitative agreement with recent theoretical predictions.Comment: 14 pages, 3 figure
Entropic torque
Quantitative predictions are presented of a depletion-induced torque and
force acting on a single colloidal hard rod immersed in a solvent of hard
spheres close to a planar hard wall. This torque and force, which are entirely
of entropic origin, may play an important role for the key-lock principle,
where a biological macromolecule (the key) is only functional in a particular
orientation with respect to a cavity (the lock)
- …