449 research outputs found

    Non-equilibrium Spin Waves in Paramagnetic Metals

    Full text link
    We theoretically study the effect of exchange interaction on the non-equilibrium spin waves in disordered paramagnetic metals under the spin injection condition. We show that the gapless spectrum of spin waves, describing the spin precession in the absence of the applied magnetic field, changes sign to negative on the paramagnetic side near the ferromagnet - paramagnet phase transition. The damping of spin waves is small in the limit when electron-electron exchange energy is larger than the inverse electron mean free time, while in the opposite limit the propagation of spin waves is strongly suppressed. We discuss the amplification of the electromagnetic field by the non-equilibrium spin waves.Comment: 6 pages, 3 figure

    Mesoscopic oscillations of the conductance of disordered metallic samples as a function of temperature

    Full text link
    We show theoretically and experimentally that the conductance of small disordered samples exhibits random oscillations as a function of temperature. The amplitude of the oscillations decays as a power law of temperature, and their characteristic period is of the order of the temperature itself

    Thin topological insulator film in a perpendicular magnetic field

    Get PDF
    We report on a study of an ultrathin topological insulator film with hybridization between the top and bottom surfaces, placed in a quantizing perpendicular magnetic field. We calculate the full Landau level spectrum of the film as a function of the applied magnetic field and the magnitude of the hybridization matrix element, taking into account both the orbital and the Zeeman spin splitting effects of the field. For an undoped film, we find a quantum phase transition between a state with a zero Hall conductivity and a state with a quantized Hall conductivity equal to e2/he^2/h, as a function of the magnitude of the applied field. The transition is driven by the competition between the Zeeman and the hybridization energies.Comment: 4+ pages, 1 figure, published versio

    Spin injection dependent metamagnetic transition

    Full text link
    We define the metamagnetic phase transition of itinerant electrons controlled by the spin injection mechanism. The current flow between a ferromagnetic metal and a metamagnetic metal produces the non-equilibrium shift of chemical potential for spin up and spin down electrons that acts as an effective magnetic field driving the metamagnetic transition.Comment: 6 pages, 3 figure
    corecore