6 research outputs found

    Quark Gluon Bags as Reggeons

    Full text link
    The influence of the medium dependent finite width of QGP bags on their equation of state is analyzed within an exactly solvable model. It is argued that the large width of the QGP bags not only explains the observed deficit in the number of hadronic resonances, but also clarifies the reason why the heavy QGP bags cannot be directly observed as metastable states in a hadronic phase. The model allows us to estimate the minimal value of the width of QGP bags from a variety of the lattice QCD data and get that the minimal resonance width at zero temperature is about 600 MeV, whereas the minimal resonance width at the Hagedorn temperature is about 2000 MeV. As shown these estimates are almost insensitive to the number of the elementary degrees of freedom. The recent lattice QCD data are analyzed and it is found that besides sigma T**4 term the lattice QCD pressure contains T-linear and T**4 ln T terms in the range of temperatures between 240 MeV and 420 MeV. The presence of the last term in the pressure bears almost no effect on the width estimates. Our analysis shows that at hight temperatures the average mass and width of the QGP bags behave in accordance with the upper bound of the Regge trajectory asymptotics (the linear asymptotics), whereas at low temperatures they obey the lower bound of the Regge trajectory asymptotics (the square root one). Since the model explicitly contains the Hagedorn mass spectrum, it allows us to remove an existing contradiction between the finite number of hadronic Regge families and the Hagedorn idea of the exponentially growing mass spectrum of hadronic bags.Comment: One section removed, a few references added, the Regge trajectories of free QGP bags are considere

    Nonlinear Regge trajectories and glueballs

    Full text link
    We apply a phenomenological approach based on nonlinear Regge trajectories to glueball states. The parameters, i.e., intercept and threshold, or trajectory termination point beyond which no bound states should exist, are determined from pomeron (scattering) data. Systematic errors inherent to the approach are discussed. We then predict masses of glueballs on the tensor trajectory. For comparison, the approach is applied to available quenched lattice data. We find a discrepancy between the lattice based thresholds and the pomeron threshold that we extract from data.Comment: 15pp., revtex4, 2 fig

    Asymptotic Regge Trajectories of Non-strange Mesons

    Full text link
    We analyze the asymptotic behavior of Regge trajectories of non-strange mesons. In contrast to an existing belief, it is demonstrated that for the asymptotically linear Regge trajectories the width of heavy hadrons cannot linearly depend on their mass. Using the data on masses and widths of rho_J, omega_J, a_J and f_J mesons for the spin values J \leq 6, we extract the parameters of the asymptotically linear Regge trajectory predicted by the finite width model of quark gluon bags. As it is shown the obtained parameters for the data set B correspond to the cross-over temperature lying in the interval 170.9-175.3 MeV which is consistent with the kinetic freeze-out temperature of early hadronizing particles found in relativistic heavy ion collisions at and above the highest SPS energy.Comment: 14 pages, 3 figure

    Statistical approach and duality

    No full text
    corecore