20 research outputs found

    Facile Redox Synthesis of Novel Bimetallic Crn+/Pd0 Nanoparticles Supported on SiO2 and TiO2 for Catalytic Selective Hydrogenation with Molecular Hydrogen

    No full text
    The bimetallic Crn+/Pd0 nanoparticles have been synthesized for the first time by a two-step redox method. The method includes the deposition of Pd0 nanoparticles on the surface of SiO2 and TiO2 carriers followed by the deposition of Crn+ on the surface of Pd0 nanoparticles using the redox procedures, which are based on the catalytic reduction of Crn+ with H2 in aqueous suspensions at ambient conditions. Transmission (TEM) and scanning (SEM) electron microscopy, X-ray photoelectron spectroscopy (XPS), Fourie-transformed infrared spectroscopy of adsorbed CO (FTIR-CO), and CO chemisorption studies were performed to characterize the morphology, nanoparticle size, element, and particle distribution, as well as the electronic state of deposited metals in the obtained catalysts. A decrease in nanoparticle size from 22 nm (Pd/SiO2) to 2–6 nm (Pd/TiO2) makes possible deposition of up to 1.1 wt.% Cr most likely as Cr3+. The deposition of CrOx species on the surface of Pd nanoparticles was confirmed using FTIR of adsorbed CO and the method of temperature-programmed reduction with hydrogen (TPR-H2). The intensive hydrogen consumption in the temperature ranges from −50 °C to 40 °C (Cr/Pd/SiO2) and from −90 °C to −40 °C (Cr/Pd/TiO2) was first observed for the supported Pd catalysts. The decrease in the temperature of β-PdHx decomposition indicates the strong interaction between the deposited Crn+ species and Pd0 nanoparticle after reduction with H2 at 500 °C. The novel Crn+/Pd/TiO2 catalysts demonstrated a considerably higher activity in selective hydrogenation of phenylacetylene than the Pd/TiO2 catalyst at ambient conditions

    Unsupported Copper Nanoparticles in the Arylation of Amines

    No full text
    Commercially available copper and copper (II) oxide nanoparticles (CuNPs and CuO NPs) were characterized using TEM and electronography methods to elucidate their true average size and composition. The catalytic amine arylation using unsupported copper nanoparticles differing in their size and copper oxidation state was investigated. The reaction of the model iodobenzene with n-octylamine was shown to be successfully catalyzed by CuNPs of average size 25 and 10/80 nm in the presence of the ligands such as 2-isobutyrylcyclohexanone (L1) and rac-1,1′-bi-2-naphthol (BINOL, L2), giving high yields (up to 95%) of the target N-octylaniline. CuO in bulk and nano forms was shown to be almost equally efficient in this process. Studies on the Cu-catalyzed amination of substituted iodobenzenes and 2-iodopyridine, as well as the arylation of different aliphatic amines and NH-heterocycles, verified that CuNPs (25 or 10/80 nm) with L1 and L2 are the most versatile and efficient nanocatalysts for a variety of substrates. Investigation of copper leaching under different conditions was carried out

    CuO-Fe2O3 Nanoparticles Supported on SiO2 and Al2O3 for Selective Hydrogenation of 2-Methyl-3-Butyn-2-ol

    No full text
    In this study, novel SiO2- and Al2O3-supported Cu-Fe catalysts are developed for selective hydrogenation of 2-methyl-3-butyne-2-ol to 2-methyl-3-butene-2-ol under mild reaction conditions. TEM, XRD, and FTIR studies of adsorbed CO and TPR-H2 are performed to characterize the morphology, nanoparticle size, and particle distribution, as well as electronic state of deposited metals in the prepared catalysts. The deposition of Fe and Cu metal particles on the aluminum oxide carrier results in the formation of a mixed oxide phase with a strong interaction between the Fe and Cu precursors during the calcination. The highly dispersed nanoparticles of Fe2O3 and partially reduced CuOx, with an average size of 3.5 nm and with strong contact interactions between the metals in 5Cu-5Fe/Al2O3 catalysts, provide a high selectivity of 93% toward 2-methyl-3-butene-2-ol at complete conversion of the unsaturated alcohol

    Unsupported Copper Nanoparticles in the Arylation of Amines

    No full text
    Commercially available copper and copper (II) oxide nanoparticles (CuNPs and CuO NPs) were characterized using TEM and electronography methods to elucidate their true average size and composition. The catalytic amine arylation using unsupported copper nanoparticles differing in their size and copper oxidation state was investigated. The reaction of the model iodobenzene with n-octylamine was shown to be successfully catalyzed by CuNPs of average size 25 and 10/80 nm in the presence of the ligands such as 2-isobutyrylcyclohexanone (L1) and rac-1,1′-bi-2-naphthol (BINOL, L2), giving high yields (up to 95%) of the target N-octylaniline. CuO in bulk and nano forms was shown to be almost equally efficient in this process. Studies on the Cu-catalyzed amination of substituted iodobenzenes and 2-iodopyridine, as well as the arylation of different aliphatic amines and NH-heterocycles, verified that CuNPs (25 or 10/80 nm) with L1 and L2 are the most versatile and efficient nanocatalysts for a variety of substrates. Investigation of copper leaching under different conditions was carried out

    Influence of the Method of Fe Deposition on the Surface of Hydrolytic Lignin on the Activity in the Process of Its Conversion in the Presence of CO<sub>2</sub>

    No full text
    Hydrolytic lignin is one of the non-demanded carbon materials. Its CO2-assisted conversion is an important way to utilize it. The use of the catalysts prepared by metal deposition on the surface of hydrolytic lignin makes it possible to apply milder conditions of the conversion process with CO2 and to improve the economic indicators. The development of methods of deposition of the active phase is a problem of high importance for any heterogeneous catalytic processes. This work aimed at investigating the influence of the conditions of iron deposition on the surface of hydrolytic lignin on the process of CO2-assisted conversion of lignin. Different Fe precursors (Fe(NO3)3, FeSO4, Fe2(SO4)3), solvents (water, isopropanol, acetone, and ethanol), and concentrations of the solution were used; the properties of Fe/lignin composites were estimated by SEM, EDX, TEM, XRD methods and catalytic tests. All the prepared samples demonstrate a higher conversion compared to starting lignin itself in the carbon dioxide-assisted conversion process. The carbon dioxide conversion was up to 66% at 800 °C for the sample prepared from Fe(NO3)3 using a twofold water volume compared to incipient wetness water volume as a solvent (vs. 39% for pure lignin)
    corecore