20 research outputs found

    Automatic morphology phenotyping of tetra- and hexaploid wheat spike using computer vision methods

    Get PDF
    Intraspecific classification of cultivated plants is necessary for the conservation of biological diversity, study of their origin and their phylogeny. The modern cultivated wheat species originated from three wild diploid ancestors as a result of several rounds of genome doubling and are represented by di-, tetra- and hexaploid species. The identification of wheat ploidy level is one of the main stages of their taxonomy. Such classification is possible based on visual analysis of the wheat spike traits. The aim of this study is to investigate the morphological characteristics of spikes for hexa- and tetraploid wheat species based on the method of high-performance phenotyping. Phenotyping of the quantitative characteristics of the spike of 17 wheat species (595 plants, 3348 images), including eight tetraploids (Triticum aethiopicum, T. dicoccoides, T. dicoccum, T. durum, T. militinae, T. polonicum, T. timopheevii, and T. turgidum) and nine hexaploids (T. compactum, T. aestivum, i:ANK-23 (near-isogenic line of T. aestivum cv. Novosibirskaya 67), T. antiquorum, T. spelta (including cv. Rother Sommer Kolben), T. petropavlovskyi, T. yunnanense, T. macha, T. sphaerococcum, and T. vavilovii), was performed. Wheat spike morphology was described on the basis of nine quantitative traits including shape, size and awns area of the spike. The traits were obtained as a result of image analysis using the WERecognizer program. A cluster analysis of plants according to the characteristics of the spike shape and comparison of their distributions in tetraploid and hexaploid species showed a higher variability of traits in hexaploid species compared to tetraploid ones. At the same time, the species themselves form two clusters in the visual characteristics of the spike. One type is predominantly hexaploid species (with the exception of one tetraploid, T. dicoccoides). The other group includes tetraploid ones (with the exception of three hexaploid ones, T. compactum, T. antiquorum, T. sphaerococcum, and i:ANK-23). Thus, it has been shown that the morphological characteristics of spikes for hexaploid and tetraploid wheat species, obtained on the basis of computer analysis of images, include differences, which are further used to develop methods for plant classifications by ploidy level and their species in an automatic mode

    Piezo-Optical Transducers in High Sensitive Strain Measurements

    Get PDF
    New piezo-optical sensors based on the piezo-optical effect for high sensitive mechanical stress measurements have been proposed and developed. The piezo-optical method provides the highest sensitivity to strains compared to sensors based on any other physical principles. Piezo-optical sensors use materials whose parameters practically not change under load or over time, therefore piezo-optical sensors are devoid of the disadvantages inherent in strain-resistive and piezoelectric sensors, such as hysteresis, parameters degradation with time, small dynamic range, low sensitivity to strains, and high sensitivity to overloads. Accurate numerical simulation and experimental investigations of the piezo-optical transducer output signal formation made it possible to optimize its design and show that the its gauge factor is two to three orders of magnitude higher than the gauge factors of sensors of other types. The cruciform shape of the transducer photoelastic element made it possible to significantly increase the stresses in its working area at a given external force. Combining compactness, reliability, resistance to overloads, linearity and high sensitivity, in terms of the all set of these parameters, piezo-optical sensors significantly surpass the currently widely used strain-resistive, piezoelectric and fiber-optic sensors and open up new, previously inaccessible, possibilities in the tasks of measuring power loads

    Prospects for terahertz imaging the human skin cancer with the help of gold-nanoparticles-based terahertz-to-infrared converter

    Full text link
    The design is suggested, and possible operation parameters are discussed, of an instrument to inspect a skin cancer tumour in the terahertz (THz) range, transferring the image into the infrared (IR) and making it visible with the help of standard IR camera. The central element of the device is the THz-to-IR converter, a Teflon or silicon film matrix with embedded 8.5 nm diameter gold nanoparticles. The use of external THz source for irradiating the biological tissue sample is presumed. The converter's temporal characteristics enable its performance in a real-time scale. The details of design suited for the operation in transmission mode (in vitro) or on the human skin in reflection mode {in vivo) are specified.Comment: To be published in the proceedings of the FANEM2018 workshop - Minsk, 3-5 June 201

    Terahertz Time-Domain Spectroscopy of Blood Serum for Differentiation of Glioblastoma and Traumatic Brain Injury

    No full text
    The possibility of the differentiation of glioblastoma from traumatic brain injury through blood serum analysis by terahertz time-domain spectroscopy and machine learning was studied using a small animal model. Samples of a culture medium and a U87 human glioblastoma cell suspension in the culture medium were injected into the subcortical brain structures of groups of mice referred to as the culture medium injection groups and glioblastoma groups, accordingly. Blood serum samples were collected in the first, second, and third weeks after the injection, and their terahertz transmission spectra were measured. The injection caused acute inflammation in the brain during the first week, so the culture medium injection group in the first week of the experiment corresponded to a traumatic brain injury state. In the third week of the experiment, acute inflammation practically disappeared in the culture medium injection groups. At the same time, the glioblastoma group subjected to a U87 human glioblastoma cell injection had the largest tumor size. The THz spectra were analyzed using two dimensionality reduction algorithms (principal component analysis and t-distributed Stochastic Neighbor Embedding) and three classification algorithms (Support Vector Machine, Random Forest, and Extreme Gradient Boosting Machine). Constructed prediction data models were verified using 10-fold cross-validation, the receiver operational characteristic curve, and a corresponding area under the curve analysis. The proposed machine learning pipeline allowed for distinguishing the traumatic brain injury group from the glioblastoma group with 95% sensitivity, 100% specificity, and 97% accuracy with the Extreme Gradient Boosting Machine. The most informative features for these groups’ differentiation were 0.37, 0.40, 0.55, 0.60, 0.70, and 0.90 THz. Thus, an analysis of mouse blood serum using terahertz time-domain spectroscopy and machine learning makes it possible to differentiate glioblastoma from traumatic brain injury
    corecore