50 research outputs found
Study of the Power Beam Pattern of RATAN-600 During the Deep RZF Survey (1998-2003)
This paper proposes a method for constructing an experimental power beam
pattern (PB) of RATAN-600 based on the sample of NVSS sources observed in the
process of a deep sky survey near local zenith. The data obtained from
observations of radio sources at wave 7.6 cm in nine bands of the survey (the
2002 and 2003 sets) are used to construct vertical PB of the telescope at
rather large offsets from the central horizontal section of the PB (+/-36').
The experimental PBs obtained using different methods are compared and the
root-mean-square deviations of the experimental PB from the corresponding
computed PB are determined. The stability of the power beam pattern in its
central part (+/-6') during the RATAN-600 Zenith Field (RZF) survey (1998-2003)
and the accuracies of the fluxes of the sources observed within the framework
of this survey and included into the RZF catalog are estimated.Comment: 15 pages, 17 figure
Renewable energy-based plant remote monitoring complex using Wi-Fi channels and elements of artificial vision
This paper presents an analysis of the renewable energy-based plant operation using special systems designed for monitoring the plant operation parameters and for performing the atmospheric parameters control. Β© 2014 WIT Press.International Journal of Safety and Security Engineering;International Journal of Sustainable Development and Planning;WIT Transactions on Ecology and the Environmen
Experimental study of high-temperature system solar heat production
Solar thermal desalination of sea and polluted waters requires obtaining an intermediate coolant temperature above 100 ΠΎC. The research results of solar concentrators parbolo-cylindrical type for heating an intermediate high (silicone oil). Apply a special system for the prevention and from high-temperature convection re-radiation elements installation. The results obtained show the prospect of this technology for thermal desalination of sea and polluted water.ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΡΠΎΠ»Π½ΡΠ° Π΄Π»Ρ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅ΡΠ½Π΅Π½ΠΈΡ ΠΌΠΎΡΡΠΊΠΈΡ
ΠΈ Π·Π°Π³ΡΡΠ·Π½Π΅Π½Π½ΡΡ
Π²ΠΎΠ΄ ΡΡΠ΅Π±ΡΠ΅Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΏΠ»ΠΎΠ½ΠΎΡΠΈΡΠ΅Π»Ρ Π²ΡΡΠ΅ 100 ΠΎΠ‘. Π ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΠ»Π½Π΅ΡΠ½ΡΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΎΡΠΎΠ² ΠΏΠ°ΡΠ±ΠΎΠ»ΠΎ-ΡΠΈΠ»ΠΈΠ½Π΄ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΈΠΏΠ° Π΄Π»Ρ Π½Π°Π³ΡΠ΅Π²Π° ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠ³ΠΎ Π²ΡΡΠΎΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ (ΡΠΈΠ»ΠΈΠΊΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ»Π°) ΡΠ΅ΠΏΠ»ΠΎΠ½ΠΎΡΠΈΡΠ΅Π»Ρ. ΠΡΠΈΠΌΠ΅Π½Π΅Π½Ρ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΡΠ΅Π΄ΠΎΡΠ²ΡΠ°ΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ ΠΈ ΠΊΠΎΠ½Π²Π΅ΠΊΡΠΈΠΈ ΠΎΡ Π²ΡΡΠΎΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π΄Π»Ρ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅ΡΠ½Π΅Π½ΠΈΡ ΠΌΠΎΡΡΠΊΠΈΡ
ΠΈ Π·Π°Π³ΡΡΠ·Π½Π΅Π½Π½ΡΡ
Π²ΠΎΠ΄
Π Π°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎ-Π³ΠΈΠ³ΠΈΠ΅Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΡΠ΅Π½ΠΊΠ° ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ 90Sr ΠΈ 137Cs Π² ΠΈΡ ΡΠΈΠΎΡΠ°ΡΠ½Π΅ ΠΠ±Ρ-ΠΡΡΡΡΡΠΊΠΎΠΉ ΡΠ΅ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ
The aim of the work is the radiation-hygienic assessment of 90Sr andΒ 137Cs content in fish of the Ob-Irtysh river system and the study of the basic laws of the radionuclides accumulation in the ichthyofauna of these rivers. To perform this task, long-term results of radioecological studies of fish from the Techa, Irtysh and Ob rivers for the period 2004-2016 were used. Fish as a food product was evaluated according to two criteria: a) permissible levels of radionuclides specific activity (SanPiN 2.3.2.1078-01); b) using the indicator of conformity Π and uncertainty of its definition ΞΠ (GOST 32161-2013 and GOST 32163-2013). It is shown that a higher content of radionuclides is observed in the ichthyofauna of the Techa river (1379.1 Bq/kg for 90Sr and 41.9 Bq/kg for 137Cs). On the Ob and Irtysh rivers, the average specific activity of radionuclides in fish was significantly lower and slightly changed during the surveyed area: for 90Sr in the range of 6.0 Γ· 8.1 Bq/kg (mean 6.8), for 137Cs β 0.6 Γ· 1.9 Bq/kg (mean 1.3). Assessment for compliance with radiation safety criteria using the indicator of compliance and its uncertainty (Π+ΞΠ) confirmed the unsuitability of use for food purposes by the radiation factor of all studied fish species from the Techa river (45Γ·55 >1). Fish from all other studied areas of the Ob-Irtysh river system can be used for food without restrictions (0,06Γ·0,53 < 1). The distribution of 90Sr and 137Cs in the ichthyofauna of the Ob-Irtysh river system part over a 2400 km is presented in the form of empirical regression models. The models describe a sharp decrease in the radionuclides specific activity in fish in the Techa and Iset rivers by two orders for 90Sr (from 2000 to 20 Bq/kg), and by one order for 137Cs (from 40 to 2 Bq/kg). With a high degree of reliability (R2>0.86 for 90Sr and R2>0.92 for 137Cs), the presence of power relationships between the content of radionuclides in the ichthyofauna and their content in water was shown, with adequacy confirmed by Fisherβs F-criteria. This can be used for a preliminary assessment of the radionuclides level in fish based on the results of measurements of the average annual concentrations of these radionuclides in water.Π¦Π΅Π»ΡΡ Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎ-Π³ΠΈΠ³ΠΈΠ΅Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΡΠ΅Π½ΠΊΠ° ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ 90Sr ΠΈ 137Cs Π² ΡΡΠ±Π΅ ΠΠ±Ρ-ΠΡΡΡΡΡΠΊΠΎΠΉ ΡΠ΅ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΈ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΠ΅ΠΉ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΠΈΡ
ΡΠΈΠΎΡΠ°ΡΠ½Π΅ ΡΡΠΈΡ
ΡΠ΅ΠΊ. ΠΠ»Ρ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ Π±ΡΠ»ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅ΡΠ½ΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ°Π΄ΠΈΠΎΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΡΡΠ±Ρ ΠΈΠ· ΡΠ΅ΠΊ Π’Π΅ΡΠ°, ΠΡΡΡΡ ΠΈ ΠΠ±Ρ Π·Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ 2004β2016 Π³Π³. ΠΡΠΏΠΎΠ»Π½Π΅Π½Π° ΠΎΡΠ΅Π½ΠΊΠ° ΡΡΠ±Ρ ΠΊΠ°ΠΊ ΠΏΠΈΡΠ΅Π²ΠΎΠ³ΠΎ ΠΏΡΠΎΠ΄ΡΠΊΡΠ° ΠΏΠΎ Π΄Π²ΡΠΌ ΠΊΡΠΈΡΠ΅ΡΠΈΡΠΌ: Π°) Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΠ΅ ΡΡΠΎΠ²Π½ΠΈ ΡΠ΄Π΅Π»ΡΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² (Π‘Π°Π½ΠΠΈΠ 2.3.2.1078-01); Π±) Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΡ Π ΠΈ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡΠΈ Π΅Π³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΞΠ (ΠΠΠ‘Π’ 32161-2013 ΠΈ ΠΠΠ‘Π’ 32163-2013). ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ Π² ΠΈΡ
ΡΠΈΠΎΡΠ°ΡΠ½Π΅ ΡΠ΅ΠΊΠΈ Π’Π΅ΡΠ° (1379,1 ΠΠΊ/ΠΊΠ³ ΠΏΠΎ 90Sr ΠΈ 41,9 ΠΠΊ/ΠΊΠ³ ΠΏΠΎ 137Cs). ΠΠ° ΡΠ΅ΠΊΠ°Ρ
ΠΠ±Ρ ΠΈ ΠΡΡΡΡ ΡΡΠ΅Π΄Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΡΠ΄Π΅Π»ΡΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΡΡΠ±Π΅ Π±ΡΠ»ΠΈ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π½ΠΈΠΆΠ΅ ΠΈ ΡΠ»Π°Π±ΠΎ ΠΈΠ·ΠΌΠ΅Π½ΡΠ»ΠΈΡΡ Π½Π° ΠΏΡΠΎΡΡΠΆΠ΅Π½ΠΈΠΈ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΡΠ°ΡΡΠΊΠ°: Π΄Π»Ρ 90Sr Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 6,0β8,1 ΠΠΊ/ΠΊΠ³ (ΡΡΠ΅Π΄Π½Π΅Π΅ 6,8), Π΄Π»Ρ 137Cs β 0,6β1,9 ΠΠΊ/ΠΊΠ³ (ΡΡΠ΅Π΄Π½Π΅Π΅ 1,3). ΠΡΠ΅Π½ΠΊΠ° Π½Π° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΠΊΡΠΈΡΠ΅ΡΠΈΡΠΌ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΡ Π ΠΈ Π΅Π³ΠΎ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡΠΈ ΞΠ (Π+ΞΠ) ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠ΄ΠΈΠ»Π° Π½Π΅ΠΏΡΠΈΠ³ΠΎΠ΄Π½ΠΎΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π² ΠΏΠΈΡΠ΅Π²ΡΡ
ΡΠ΅Π»ΡΡ
ΠΏΠΎ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΌΡ ΡΠ°ΠΊΡΠΎΡΡ Π²ΡΠ΅Ρ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΡ
Π²ΠΈΠ΄ΠΎΠ² ΡΡΠ± ΠΈΠ· Ρ. Π’Π΅ΡΠΈ (45β55 >1). Π ΡΠ±Π° ΠΈΠ· Π²ΡΠ΅Ρ
ΠΎΡΡΠ°Π»ΡΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΡ
ΡΡΠ°ΡΡΠΊΠΎΠ² ΠΠ±Ρ-ΠΡΡΡΡΡΠΊΠΎΠΉ ΡΠ΅ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π° Π² ΠΏΠΈΡΡ Π±Π΅Π· ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΠΉ (0,06β0,53 < 1). ΠΠ°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ 90Sr ΠΈ 137Cs Π² ΠΈΡ
ΡΠΈΠΎΡΠ°ΡΠ½Π΅ ΠΠ±Ρ-ΠΡΡΡΡΡΠΊΠΎΠΉ ΡΠ΅ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π½Π° ΡΡΠ°ΡΡΠΊΠ΅ ΠΏΡΠΎΡΡΠΆΠ΅Π½Π½ΠΎΡΡΡΡ 2400 ΠΊΠΌ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π² Π²ΠΈΠ΄Π΅ ΡΠΌΠΏΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΎΠ½Π½ΡΡ
ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ. ΠΠΎΠ΄Π΅Π»ΠΈ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡ ΡΠ΅Π·ΠΊΠΎΠ΅ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΄Π΅Π»ΡΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΡΡΠ±Π΅ Π½Π° ΡΡΠ°ΡΡΠΊΠ΅ ΡΠ΅ΠΊ Π’Π΅ΡΠ° β ΠΡΠ΅ΡΡ Π½Π° Π΄Π²Π° ΠΏΠΎΡΡΠ΄ΠΊΠ° Π²Π΅Π»ΠΈΡΠΈΠ½ ΠΏΠΎ 90Sr (Ρ 2000 Π΄ΠΎ 20 ΠΠΊ/ΠΊΠ³) ΠΈ Π½Π° ΠΎΠ΄ΠΈΠ½ ΠΏΠΎΡΡΠ΄ΠΎΠΊ ΠΏΠΎ 137Cs (Ρ 40 Π΄ΠΎ 2 ΠΠΊ/ΠΊΠ³). Π‘ Π²ΡΡΠΎΠΊΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΡΡ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎΡΡΠΈ (R2 >0,86 Π΄Π»Ρ 90Sr ΠΈ R2 >0,92 Π΄Π»Ρ 137Cs) ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π°Π»ΠΈΡΠΈΠ΅ ΡΡΠ΅ΠΏΠ΅Π½Π½ΡΡ
Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠ΅ΠΉ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΠΈΡ
ΡΠΈΠΎΡΠ°ΡΠ½Π΅ ΠΈ ΠΈΡ
ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ Π² Π²ΠΎΠ΄Π΅, Ρ Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΠΎΡΡΡΡ, ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½Π½ΠΎΠΉ ΠΊΡΠΈΡΠ΅ΡΠΈΡΠΌΠΈ Π€ΠΈΡΠ΅ΡΠ°. ΠΡΠΎ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΎ Π΄Π»Ρ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΡΠΎΠ²Π½Ρ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΡΡΠ±Π΅ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎΠ΄ΠΎΠ²ΡΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ ΡΡΠΈΡ
ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² Π²ΠΎΠ΄Π΅
Π Π°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΡΠΉ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³ ΠΏΠΈΡΡΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Ρ Π² ΡΠ°ΠΉΠΎΠ½Π΅ ΠΠ΅Π»ΠΎΡΡΡΠΊΠΎΠΉ ΠΠΠ‘
The article provides a radiation-hygienic assessment of the current state of drinking water supply sources for the population in the observation area of the the Beloyarsk NPP and the Institute of Nuclear Materials. We determined the content of natural (234U, 238U, 226Ra, 228Ra, 210Po, 222Rn, 210Pb, 228Th, 230Th, 232Th) and technogenic (3H, 14C, 60Co, 90Sr, 134Cs, 137Cs, 238Pu, 239,240Pu, 241Am) radionuclides in drinking water of tap water, water boreholes and water wells in test settlements located at different distances and directions from radiation hazardous facilities. Results of monitoring of water sources in 2012β2013 and 2019 showed the radiation safety of drinking water in the vicinity of the Beloyarsk NPP according to several criteria. Thus, the maximum levels of the gross specific alpha-activity of radionuclides in water samples were 3.9 times lower than the control level (0.2 Bq/kg), the gross specific beta-activity was 5.7 times lower than the control level (1 Bq/ kg). Over the entire observation period, none of the drinking water samples exceeded the control levels both for individual radionuclides and for the sum of the ratios of specific activities to control levels. The content of natural and artificial radionuclides in drinking water near the Beloyarsk NPP decreases in the following order: water wells > water boreholes > tap water. For the past 20 years, there was a decrease in tritium specific activity in drinking water of the Beloyarsk NPP region by 20β35%, depending on the source of water supply. It was noted that the launch of the BN-800 reactor also did not lead to an increase in the content of other artificial radionuclides (90Sr, 137Cs) in groundwater. The average annual effective dose of internal exposure of the population due to drinking water consumption in the vicinity of the Beloyarsk NPP is 0.05 mSv, according to conservative estimates β 0.07 mSv, which is below the radiation safety threshold (0.1 mSv/a) recommended by the WHO. Natural radionuclides play the primary role in the formation of the annual average effective dose for internal irradiation (98.9%) due to drinking water consumption on the considered territories. 210Po makes the largest contribution to the dose from natural radioisotopes β 43%, somewhat less is made by 210Pb β 25%. The third place in the dose formation from natural radionuclides belongs to 234U (8%), 228Ra (7%), 226Ra (6%) and 230Th (6%). The contribution of other natural radioisotopes in the formation of the internal radiation dose from drinking water consumption does not exceed 2-3%. The contribution of technogenic radionuclides to the annual average effective dose from the consumption of drinking water is negligible (about 1%). Of the technogenic components, 90Sr (60%), 3H (20%), and 241Am (12%) play the most significant role in the formation of the internal exposure dose.Π ΡΡΠ°ΡΡΠ΅ Π΄Π°Π½Π° ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎ-Π³ΠΈΠ³ΠΈΠ΅Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΡΠ΅Π½ΠΊΠ° ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² ΠΏΠΈΡΡΠ΅Π²ΠΎΠ³ΠΎ Π²ΠΎΠ΄ΠΎΡΠ½Π°Π±ΠΆΠ΅Π½ΠΈΡ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ Π² Π·ΠΎΠ½Π΅ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡ ΠΠ΅Π»ΠΎΡΡΡΠΊΠΎΠΉ ΠΠΠ‘ ΠΈ ΠΠ½ΡΡΠΈΡΡΡΠ° ΡΠ΅Π°ΠΊΡΠΎΡΠ½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ². ΠΠ° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΡΠ΅ΡΡΠΎΠ²ΡΡ
Π½Π°ΡΠ΅Π»Π΅Π½Π½ΡΡ
ΠΏΡΠ½ΠΊΡΠΎΠ², ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΡΡ
Π½Π° ΡΠ°Π·Π½ΠΎΠΌ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠΈ ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡΡ
ΠΎΡ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎ-ΠΎΠΏΠ°ΡΠ½ΡΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ², ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΏΡΠΈΡΠΎΠ΄Π½ΡΡ
(234U, 238U, 226Ra, 228Ra, 210Po, 222Rn, 210Pb, 228Th, 230Th, 232Th) ΠΈ ΡΠ΅Ρ
Π½ΠΎΠ³Π΅Π½Π½ΡΡ
(3H, 14C, 60Co, 90Sr, 134Cs, 137Cs, 238Pu, 239,240Pu, 241Am) ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΠΏΠΈΡΡΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Π΅ Π²ΠΎΠ΄ΠΎΠΏΡΠΎΠ²ΠΎΠ΄ΠΎΠ², ΡΠΊΠ²Π°ΠΆΠΈΠ½ ΠΈ ΠΊΠΎΠ»ΠΎΠ΄ΡΠ΅Π². Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π° ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² Π²ΠΎΠ΄ΠΎΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π² 2012β2013 Π³Π³. ΠΈ Π² 2019 Π³. ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΡΡ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΡ ΠΏΠΈΡΡΠ΅Π²ΡΡ
Π²ΠΎΠ΄ Π² ΡΠ΅Π³ΠΈΠΎΠ½Π΅ ΠΠ΅Π»ΠΎΡΡΡΠΊΠΎΠΉ ΠΠΠ‘ ΠΏΠΎ ΡΡΠ΄Ρ ΠΊΡΠΈΡΠ΅ΡΠΈΠ΅Π². Π’Π°ΠΊ, ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠΎΠ²Π½ΠΈ ΡΠ΄Π΅Π»ΡΠ½ΠΎΠΉ ΡΡΠΌΠΌΠ°ΡΠ½ΠΎΠΉ Π°Π»ΡΡΠ°-Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΠΏΡΠΎΠ±Π°Ρ
Π±ΡΠ»ΠΈ Π² 3,9 ΡΠ°Π·Π° Π½ΠΈΠΆΠ΅ ΠΊΡΠΈΡΠ΅ΡΠΈΡ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΡ Π²ΠΎΠ΄Ρ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡΠΌ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ (0,2 ΠΠΊ/ΠΊΠ³), ΡΠ΄Π΅Π»ΡΠ½ΠΎΠΉ ΡΡΠΌΠΌΠ°ΡΠ½ΠΎΠΉ Π±Π΅ΡΠ°-Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ β Π² 5,7 ΡΠ°Π·Π° ΠΌΠ΅Π½ΡΡΠ΅ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΊΡΠΈΡΠ΅ΡΠΈΡ (1 ΠΠΊ/ΠΊΠ³). ΠΠ° Π²Π΅ΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΠΉ Π½ΠΈ Π² ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΏΡΠΎΠ± ΠΏΠΈΡΡΠ΅Π²ΡΡ
Π²ΠΎΠ΄ Π½Π΅ Π±ΡΠ»ΠΈ ΠΏΡΠ΅Π²ΡΡΠ΅Π½Ρ ΠΊΠ°ΠΊ ΡΡΠΎΠ²Π½ΠΈ Π²ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΡΡΠ²Π° ΠΏΠΎ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠΌ ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄Π°ΠΌ, ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠ΅ ΠΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ 2Π° ΠΊ ΠΠ Π-99/2009, ΡΠ°ΠΊ ΠΈ ΠΊΡΠΈΡΠ΅ΡΠΈΠΉ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΡ ΠΏΠΈΡΡΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Ρ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡΠΌ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ β ΡΡΠΌΠΌΠ° ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ ΡΠ΄Π΅Π»ΡΠ½ΡΡ
Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠ΅ΠΉ ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² ΠΊ ΡΡΠΎΠ²Π½ΡΠΌ Π²ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΡΡΠ²Π° Π½Π΅ ΠΏΡΠ΅Π²ΡΡΠ°Π»Π° 1. Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΏΡΠΈΡΠΎΠ΄Π½ΡΡ
ΠΈ ΡΠ΅Ρ
Π½ΠΎΠ³Π΅Π½Π½ΡΡ
ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΠΏΠΈΡΡΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Π΅ ΡΠ°ΠΉΠΎΠ½Π° ΠΠ΅Π»ΠΎΡΡΡΠΊΠΎΠΉ ΠΠΠ‘ ΡΠ½ΠΈΠΆΠ°Π΅ΡΡΡ Π² ΡΡΠ΄Ρ: ΠΊΠΎΠ»ΠΎΠ΄ΡΡ > ΡΠΊΠ²Π°ΠΆΠΈΠ½Ρ > Π²ΠΎΠ΄ΠΎΠΏΡΠΎΠ²ΠΎΠ΄Ρ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ Π·Π° ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ 20 Π»Π΅Ρ ΡΠ΄Π΅Π»ΡΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΡΠΈΡΠΈΡ Π² ΠΏΠΈΡΡΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Π΅ ΡΠ°ΠΉΠΎΠ½Π° ΠΠ΅Π»ΠΎΡΡΡΠΊΠΎΠΉ ΠΠΠ‘ Π½Π° 20β35% Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° Π²ΠΎΠ΄ΠΎΡΠ½Π°Π±ΠΆΠ΅Π½ΠΈΡ. ΠΡΠΌΠ΅ΡΠ΅Π½ΠΎ, ΡΡΠΎ Π½Π°ΡΠ°Π»ΠΎ ΡΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡΠΈΠΈ ΡΠ΅Π°ΠΊΡΠΎΡΠ° ΠΠ-800 Π½Π΅ ΠΏΡΠΈΠ²Π΅Π»ΠΎ ΠΊ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΡΠ΅Ρ
Π½ΠΎΠ³Π΅Π½Π½ΡΡ
ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² (90Sr, 137Cs) Π² ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½ΡΡ
Π²ΠΎΠ΄Π°Ρ
. Π‘ΡΠ΅Π΄Π½ΡΡ Π³ΠΎΠ΄ΠΎΠ²Π°Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½Π°Ρ Π΄ΠΎΠ·Π° Π²Π½ΡΡΡΠ΅Π½Π½Π΅Π³ΠΎ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ ΠΎΡ ΠΏΠΎΡΡΠ΅Π±Π»Π΅Π½ΠΈΡ ΠΏΠΈΡΡΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Ρ Π² Π·ΠΎΠ½Π΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π²Π»ΠΈΡΠ½ΠΈΡ ΠΠ΅Π»ΠΎΡΡΡΠΊΠΎΠΉ ΠΠΠ‘ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 0,05 ΠΌΠΠ², ΠΏΠΎ ΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°ΡΠΈΠ²Π½ΡΠΌ ΠΎΡΠ΅Π½ΠΊΠ°ΠΌ β 0,07 ΠΌΠΠ², ΡΡΠΎ Π½ΠΈΠΆΠ΅ ΡΠ΅ΡΠ΅ΡΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ Π΄ΠΎΠ·ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΎΠ²Π½Ρ ΠΎΠΆΠΈΠ΄Π°Π΅ΠΌΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ Π΄ΠΎΠ·Ρ Π·Π° ΡΡΠ΅Ρ ΠΏΠΎΡΡΠ΅Π±Π»Π΅Π½ΠΈΡ ΠΏΠΈΡΡΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Ρ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π³ΠΎΠ΄Π° (0,1 ΠΌΠΠ²/ Π³ΠΎΠ΄), ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΠΠ. ΠΡΠ½ΠΎΠ²Π½ΠΎΠΉ Π²ΠΊΠ»Π°Π΄ Π² ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ΅Π΄Π½Π΅ΠΉ Π³ΠΎΠ΄ΠΎΠ²ΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ Π΄ΠΎΠ·Ρ Π²Π½ΡΡΡΠ΅Π½Π½Π΅Π³ΠΎ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ (98,9%) ΠΎΡ ΠΏΠΎΡΡΠ΅Π±Π»Π΅Π½ΠΈΡ ΠΏΠΈΡΡΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Ρ Π² ΡΠ°ΠΉΠΎΠ½Π΅ ΠΠ΅Π»ΠΎΡΡΡΠΊΠΎΠΉ ΠΠΠ‘ Π²Π½ΠΎΡΡΡ ΠΏΡΠΈΡΠΎΠ΄Π½ΡΠ΅ ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄Ρ. ΠΠ°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠΉ Π²ΠΊΠ»Π°Π΄ Π² Π΄ΠΎΠ·Ρ Π²Π½ΡΡΡΠ΅Π½Π½Π΅Π³ΠΎ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ Π·Π° ΡΡΠ΅Ρ ΠΏΠΎΡΡΠ΅Π±Π»Π΅Π½ΠΈΡ ΠΏΠΈΡΡΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Ρ ΠΎΡ ΠΏΡΠΈΡΠΎΠ΄Π½ΡΡ
ΡΠ°Π΄ΠΈΠΎΠΈΠ·ΠΎΡΠΎΠΏΠΎΠ² Π²Π½ΠΎΡΠΈΡ 210Po β 43%, Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΌΠ΅Π½ΡΡΠΈΠΉ 210Pb β 25%. ΠΠ° ΡΡΠ΅ΡΡΠ΅ΠΌ ΠΌΠ΅ΡΡΠ΅ Π² Π΄ΠΎΠ·ΠΎΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΎΡ ΠΏΡΠΈΡΠΎΠ΄Π½ΡΡ
ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² Π½Π°Ρ
ΠΎΠ΄ΡΡΡΡ: 234U (8%), 228Ra (7%), 226Ra (6%) ΠΈ 230Th (6%). Π ΠΎΠ»Ρ ΠΎΡΡΠ°Π»ΡΠ½ΡΡ
ΠΏΡΠΈΡΠΎΠ΄Π½ΡΡ
ΡΠ°Π΄ΠΈΠΎΠΈΠ·ΠΎΡΠΎΠΏΠΎΠ² Π² ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Π΄ΠΎΠ·Ρ Π²Π½ΡΡΡΠ΅Π½Π½Π΅Π³ΠΎ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ ΠΎΡ ΠΏΠΎΡΡΠ΅Π±Π»Π΅Π½ΠΈΡ ΠΏΠΈΡΡΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Ρ Π½Π΅ ΠΏΡΠ΅Π²ΡΡΠ°Π΅Ρ 2β3%. ΠΠΊΠ»Π°Π΄ ΡΠ΅Ρ
Π½ΠΎΠ³Π΅Π½Π½ΡΡ
ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΡΡΠ΅Π΄Π½ΡΡ Π³ΠΎΠ΄ΠΎΠ²ΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ Π΄ΠΎΠ·Ρ ΠΎΡ ΠΏΠΎΡΡΠ΅Π±Π»Π΅Π½ΠΈΡ ΠΏΠΈΡΡΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Ρ Π½ΠΈΡΡΠΎΠΆΠ½ΠΎ ΠΌΠ°Π» (ΠΎΠΊΠΎΠ»ΠΎ 1%). ΠΡ ΡΠ΅Ρ
Π½ΠΎΠ³Π΅Π½Π½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠΉ Π²ΠΊΠ»Π°Π΄ Π² ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π΄ΠΎΠ·Ρ Π²Π½ΡΡΡΠ΅Π½Π½Π΅Π³ΠΎ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ Π²Π½ΠΎΡΡΡ 90Sr (60%), 3H (20%) ΠΈ 241Am (12%)
ΠΡΠ΅Π½ΠΊΠ° Π²Π»ΠΈΡΠ½ΠΈΡ ΡΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡΠΈΠΈ ΡΠ΅Π°ΠΊΡΠΎΡΠ° ΠΠ-800 Π½Π° ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΠΌΠ΅ΡΡΠ½ΡΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠ°Ρ ΠΏΠΈΡΠ°Π½ΠΈΡ ΡΠ°ΠΉΠΎΠ½Π° ΠΠ΅Π»ΠΎΡΡΡΠΊΠΎΠΉ ΠΠΠ‘
The research results are presented as an analysis of long-term data on the effect of gas-aerosol emissions and liquid discharges of Beloyarsk NPP and the Institute of Reactor Materials on the content of artificial radionuclides in local foodstuffs. It was noted that the distance and directions from radiation-hazardous facilities do not significantly affect the accumulation of 90Sr and 137Cs in potatoes and milk. The investigation of a wide range of foodstuffs from the private households of 23 settlements, forests, rivers, and a reservoir of the 30-km zone of the Beloyarsk NPP influence showed that the operation of the BN-800 reactor since 2016 did not lead to a registered increase in the content of artificial radionuclides in agricultural and natural foodstuffs. The maximum specific activities of 90Sr (0.84 Bq/kg) and 137Cs (0.26 Bq/kg) in root vegetables, potatoes, melons and vegetables were noted before the start of operation of the new power unit and were 45 and 300 times, respectively, lower than the current SanPiN standards. The highest content of 90Sr in milk (0.41 Bq/l) was 60 times lower than the requirements of SanPiN, 137Cs (0.11 Bq/l) was 900 times less than the permissible levels. In poultry, the specific activity of 90Sr (0.2-0.3 Bq/kg) and 137Cs (0.13-0.16 Bq/kg) has remained stable low in recent years, and the standardised content of 137Cs in beef (maximum 0.12 Bq/kg) more than 1.5 thousand times lower than the requirements of SanPiN. The highest concentration of 137Cs in wild berries, found in strawberries (1.27 Bq/kg), was 125 times less than SanPiN standards. The content of 90Sr in mushrooms was at the level of 0.1-2.5 Bq/kg, the content of 137Cs is slightly higher than - 0.6-5.8 Bq/kg. The maximum recorded specific activity of 137Cs in mushrooms was more than 80 times lower than the requirements of SanPiN. During the observation period, a decrease of up to 20% or more in the content of artificial radionuclides in samples of 5 fish species was noted; the maximum levels of 90Sr and 137Cs in it were 14 times lower than the strictest SanPiN standards (using fish for baby food). Selective radiation monitoring of foodstuffs of Beloyarsk NPP area aimed at 3H and 14C showed that the content of these radionuclides in foodstuffs was low, close to the background level. In agricultural products, 3H and 14C accumulated to a greater extent in potatoes and milk, and in natural products β in rough boletus and bream. There was noted a need to continue research on the accumulation of 3H and 14C in foodstuffs of Beloyarsk NPP vicinity.Π ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅ΡΠ½ΠΈΡ
Π΄Π°Π½Π½ΡΡ
ΠΏΠΎ Π²Π»ΠΈΡΠ½ΠΈΡ Π³Π°Π·ΠΎΠ°ΡΡΠΎΠ·ΠΎΠ»ΡΠ½ΡΡ
Π²ΡΠ±ΡΠΎΡΠΎΠ² ΠΈ ΠΆΠΈΠ΄ΠΊΠΈΡ
ΡΠ±ΡΠΎΡΠΎΠ² ΠΠ΅Π»ΠΎΡΡΡΠΊΠΎΠΉ ΠΠΠ‘ ΠΈ ΠΠ½ΡΡΠΈΡΡΡΠ° ΡΠ΅Π°ΠΊΡΠΎΡΠ½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² Π½Π° ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΠ΅Ρ
Π½ΠΎΠ³Π΅Π½Π½ΡΡ
ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΠΌΠ΅ΡΡΠ½ΡΡ
ΠΏΠΈΡΠ΅Π²ΡΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΠ°Ρ
. ΠΡΠΌΠ΅ΡΠ΅Π½ΠΎ, ΡΡΠΎ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎΡ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎ ΠΎΠΏΠ°ΡΠ½ΡΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Π·Π½Π°ΡΠΈΠΌΠΎ Π½Π΅ Π²Π»ΠΈΡΡΡ Π½Π° Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ 90Sr ΠΈ 137Cs Π² ΠΊΠ°ΡΡΠΎΡΠ΅Π»Π΅ ΠΈ ΠΌΠΎΠ»ΠΎΠΊΠ΅. ΠΠ° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΡΠΈΡΠΎΠΊΠΎΠ³ΠΎ ΡΡΠ΄Π° ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² ΠΏΠΈΡΠ°Π½ΠΈΡ ΠΈΠ· ΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΊΡΠΎΡΠ° 23 Π½Π°ΡΠ΅Π»Π΅Π½Π½ΡΡ
ΠΏΡΠ½ΠΊΡΠΎΠ², Π»Π΅ΡΠΎΠ², ΡΠ΅ΠΊ ΠΈ Π²ΠΎΠ΄ΠΎΡ
ΡΠ°Π½ΠΈΠ»ΠΈΡΠ° 30-ΠΊΠΈΠ»ΠΎΠΌΠ΅ΡΡΠ²ΠΎΠΉ Π·ΠΎΠ½Ρ Π²Π»ΠΈΡΠ½ΠΈΡ ΠΠ΅Π»ΠΎΡΡΡΠΊΠΎΠΉ ΠΠΠ‘ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡΠΈΡ Ρ 2016 Π³. ΡΠ΅Π°ΠΊΡΠΎΡΠ° ΠΠ-800 Π½Π΅ ΠΏΡΠΈΠ²Π΅Π»Π° ΠΊ ΡΠ΅Π³ΠΈΡΡΡΠΈΡΡΠ΅ΠΌΠΎΠΌΡ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΡΠ΅Ρ
Π½ΠΎΠ³Π΅Π½Π½ΡΡ
ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΡΠ΅Π»ΡΡΠΊΠΎΡ
ΠΎΠ·ΡΠΉΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΈ ΠΏΡΠΈΡΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΈΡΠ΅Π²ΠΎΠΉ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ. ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ ΡΠ΄Π΅Π»ΡΠ½ΡΠ΅ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ 90Sr (0,84 ΠΠΊ/ΠΊΠ³) ΠΈ 137Cs (0,26 ΠΠΊ/ΠΊΠ³) Π² ΠΊΠΎΡΠ½Π΅ΠΏΠ»ΠΎΠ΄Π°Ρ
, ΠΊΠ°ΡΡΠΎΡΠ΅Π»Π΅, Π±Π°Ρ
ΡΠ΅Π²ΡΡ
ΠΈ ΠΎΠ²ΠΎΡΠ°Ρ
ΠΎΡΠΌΠ΅ΡΠ°Π»ΠΈΡΡ Π΄ΠΎ Π½Π°ΡΠ°Π»Π° ΡΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡΠΈΠΈ Π½ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ½Π΅ΡΠ³ΠΎΠ±Π»ΠΎΠΊΠ° ΠΈ Π±ΡΠ»ΠΈ Π² 45 ΠΈ 300 ΡΠ°Π· ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ Π½ΠΈΠΆΠ΅ Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΡ
Π½ΠΎΡΠΌΠ°ΡΠΈΠ²ΠΎΠ² Π‘Π°Π½ΠΠΈΠ. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π² ΠΌΠΎΠ»ΠΎΠΊΠ΅ 90Sr (0,41 ΠΠΊ/Π») Π±ΡΠ»ΠΎ Π² 60 ΡΠ°Π· Π½ΠΈΠΆΠ΅ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ Π‘Π°Π½ΠΠΈΠ, 137Cs (0,11 ΠΠΊ/Π») Π² 900 ΡΠ°Π· ΠΌΠ΅Π½ΡΡΠ΅ Π½ΠΎΡΠΌΠ°ΡΠΈΠ²ΠΎΠ². Π ΠΌΡΡΠ΅ Π΄ΠΎΠΌΠ°ΡΠ½Π΅ΠΉ ΠΏΡΠΈΡΡ ΡΠ΄Π΅Π»ΡΠ½Π°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ 90Sr (0,2β0,3 ΠΠΊ/ΠΊΠ³) ΠΈ 137Cs (0,13β0,16 ΠΠΊ/ΠΊΠ³) Π² ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ Π³ΠΎΠ΄Ρ ΠΎΡΡΠ°Π΅ΡΡΡ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎ Π½ΠΈΠ·ΠΊΠΎΠΉ, Π° Π½ΠΎΡΠΌΠΈΡΡΠ΅ΠΌΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ 137Cs Π² Π³ΠΎΠ²ΡΠ΄ΠΈΠ½Π΅ (ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ β 0,12 ΠΠΊ/ΠΊΠ³) Π±ΠΎΠ»Π΅Π΅ ΡΠ΅ΠΌ Π² 1,5 ΡΡΡ. ΡΠ°Π· Π½ΠΈΠΆΠ΅ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ Π‘Π°Π½ΠΠΈΠ. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠ°Ρ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ 137Cs Π² Π»Π΅ΡΠ½ΡΡ
ΡΠ³ΠΎΠ΄Π°Ρ
, ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½Π½Π°Ρ Π² Π·Π΅ΠΌΠ»ΡΠ½ΠΈΠΊΠ΅ (1,27 ΠΠΊ/ΠΊΠ³), ΠΌΠ΅Π½ΡΡΠ΅ Π½ΠΎΡΠΌΠ°ΡΠΈΠ²ΠΎΠ² Π‘Π°Π½ΠΠΈΠ Π² 125 ΡΠ°Π·. Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ 90Sr Π² Π³ΡΠΈΠ±Π°Ρ
Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΡΡΠΎΠ²Π½Π΅ 0,1β2,5 ΠΠΊ/ΠΊΠ³, 137Cs Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π²ΡΡΠ΅ β 0,6β5,8 ΠΠΊ/ΠΊΠ³. ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ Π·Π°ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½Π°Ρ ΡΠ΄Π΅Π»ΡΠ½Π°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ 137Cs Π² Π³ΡΠΈΠ±Π°Ρ
Π½ΠΈΠΆΠ΅ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ Π‘Π°Π½ΠΠΈΠ Π±ΠΎΠ»Π΅Π΅ ΡΠ΅ΠΌ Π² 80 ΡΠ°Π·. ΠΡΠΌΠ΅ΡΠ΅Π½ΠΎ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ Π·Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΠΉ Π΄ΠΎ 20% ΠΈ Π±ΠΎΠ»Π΅Π΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΡΠ΅Ρ
Π½ΠΎΠ³Π΅Π½Π½ΡΡ
ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΠΏΡΠΎΠ±Π°Ρ
5 Π²ΠΈΠ΄ΠΎΠ² ΡΡΠ±; ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠΎΠ²Π½ΠΈ 90Sr ΠΈ 137Cs Π² Π½Π΅ΠΉ Π±ΡΠ»ΠΈ Π½ΠΈΠΆΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΆΠ΅ΡΡΠΊΠΈΡ
Π½ΠΎΡΠΌΠ°ΡΠΈΠ²ΠΎΠ² Π‘Π°Π½ΠΠΈΠ (ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ±Ρ Π΄Π»Ρ Π΄Π΅ΡΡΠΊΠΎΠ³ΠΎ ΠΏΠΈΡΠ°Π½ΠΈΡ) Π² 14 ΡΠ°Π·. ΠΡΠ±ΠΎΡΠΎΡΠ½ΡΠΉ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΡΠΉ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΏΠΈΡΠ΅Π²ΡΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² ΡΠ°ΠΉΠΎΠ½Π° ΠΠ΅Π»ΠΎΡΡΡΠΊΠΎΠΉ ΠΠΠ‘ Π½Π° 3H ΠΈ 14C ΠΏΠΎΠΊΠ°Π·Π°Π», ΡΡΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΡΠΈΡ
ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΠΏΡΠΎΠ΄ΡΠΊΡΠ°Ρ
ΠΏΠΈΡΠ°Π½ΠΈΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π½Π° Π½ΠΈΠ·ΠΊΠΎΠΌ, Π±Π»ΠΈΠ·ΠΊΠΎΠΌ ΠΊ ΡΠΎΠ½ΠΎΠ²ΠΎΠΌΡ ΡΡΠΎΠ²Π½Π΅. Π ΡΠ΅Π»ΡΡΠΊΠΎΡ
ΠΎΠ·ΡΠΉΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ 3H ΠΈ 14C Π² Π±ΠΎΠ»ΡΡΠ΅ΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°ΡΡΡΡ Π² ΠΊΠ°ΡΡΠΎΡΠ΅Π»Π΅ ΠΈ ΠΌΠΎΠ»ΠΎΠΊΠ΅, ΠΈΠ· ΠΏΡΠΈ- ΡΠΎΠ΄Π½ΡΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² Π² ΠΏΠΎΠ΄Π±Π΅ΡΠ΅Π·ΠΎΠ²ΠΈΠΊΠ΅ ΠΈ Π»Π΅ΡΠ΅. ΠΡΠΌΠ΅ΡΠ΅Π½Π° Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ 3H ΠΈ 14C Π² ΠΏΡΠΎΠ΄ΡΠΊΡΠ°Ρ
ΠΏΠΈΡΠ°Π½ΠΈΡ ΡΠ°ΠΉΠΎΠ½Π° ΠΠ΅Π»ΠΎΡΡΡΠΊΠΎΠΉ ΠΠΠ‘
Combustion of liquid fuel in rectangular mini and microchannels
It is shown that flame spread rate can be high and comparable with velocities of flame propagation in the stoichiometric homogeneous gas mixture. The flame spread rate depends on velocity of oxidizer. It can either increase or decrease with arise of oxidizer velocity, depending on the oxygen content. The flame surface is significantly distorted with increase in average flame spread rate. It is shown that the flame spread rate can be significant and comparable with the laminar burning velocity of the stoichiometric homogeneous gaseous mixture