50 research outputs found

    Study of the Power Beam Pattern of RATAN-600 During the Deep RZF Survey (1998-2003)

    Full text link
    This paper proposes a method for constructing an experimental power beam pattern (PB) of RATAN-600 based on the sample of NVSS sources observed in the process of a deep sky survey near local zenith. The data obtained from observations of radio sources at wave 7.6 cm in nine bands of the survey (the 2002 and 2003 sets) are used to construct vertical PB of the telescope at rather large offsets from the central horizontal section of the PB (+/-36'). The experimental PBs obtained using different methods are compared and the root-mean-square deviations of the experimental PB from the corresponding computed PB are determined. The stability of the power beam pattern in its central part (+/-6') during the RATAN-600 Zenith Field (RZF) survey (1998-2003) and the accuracies of the fluxes of the sources observed within the framework of this survey and included into the RZF catalog are estimated.Comment: 15 pages, 17 figure

    Renewable energy-based plant remote monitoring complex using Wi-Fi channels and elements of artificial vision

    Full text link
    This paper presents an analysis of the renewable energy-based plant operation using special systems designed for monitoring the plant operation parameters and for performing the atmospheric parameters control. Β© 2014 WIT Press.International Journal of Safety and Security Engineering;International Journal of Sustainable Development and Planning;WIT Transactions on Ecology and the Environmen

    Experimental study of high-temperature system solar heat production

    Full text link
    Solar thermal desalination of sea and polluted waters requires obtaining an intermediate coolant temperature above 100 ΠΎC. The research results of solar concentrators parbolo-cylindrical type for heating an intermediate high (silicone oil). Apply a special system for the prevention and from high-temperature convection re-radiation elements installation. The results obtained show the prospect of this technology for thermal desalination of sea and polluted water.ИспользованиС энСргии солнца для тСрмичСского опрСснСния морских ΠΈ загрязнСнных Π²ΠΎΠ΄ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ получСния Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ тСплоноситСля Π²Ρ‹ΡˆΠ΅ 100 ΠΎΠ‘. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования солнСчных ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠ² ΠΏΠ°Ρ€Π±ΠΎΠ»ΠΎ-цилиндричСского Ρ‚ΠΈΠΏΠ° для Π½Π°Π³Ρ€Π΅Π²Π° ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ высокотСмпСратурного (силиконового масла) тСплоноситСля. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½Ρ‹ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ систСмы прСдотвращСния пСрСизлучСния ΠΈ ΠΊΠΎΠ½Π²Π΅ΠΊΡ†ΠΈΠΈ ΠΎΡ‚ высокотСмпСратурных элСмСнтов установки. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π΄Π°Π½Π½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ для тСрмичСского опрСснСния морских ΠΈ загрязнСнных Π²ΠΎΠ΄

    Π Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎ-гигиСничСская ΠΎΡ†Π΅Π½ΠΊΠ° содСрТания ΠΈ распрСдСлСния 90Sr ΠΈ 137Cs Π² ΠΈΡ…Ρ‚ΠΈΠΎΡ„Π°ΡƒΠ½Π΅ Обь-Π˜Ρ€Ρ‚Ρ‹ΡˆΡΠΊΠΎΠΉ Ρ€Π΅Ρ‡Π½ΠΎΠΉ систСмы

    Get PDF
    The aim of the work is the radiation-hygienic assessment of 90Sr andΒ  137Cs content in fish of the Ob-Irtysh river system and the study of the basic laws of the radionuclides accumulation in the ichthyofauna of these rivers. To perform this task, long-term results of radioecological studies of fish from the Techa, Irtysh and Ob rivers for the period 2004-2016 were used. Fish as a food product was evaluated according to two criteria: a) permissible levels of radionuclides specific activity (SanPiN 2.3.2.1078-01); b) using the indicator of conformity Π’ and uncertainty of its definition Ξ”Π’ (GOST 32161-2013 and GOST 32163-2013). It is shown that a higher content of radionuclides is observed in the ichthyofauna of the Techa river (1379.1 Bq/kg for 90Sr and 41.9 Bq/kg for 137Cs). On the Ob and Irtysh rivers, the average specific activity of radionuclides in fish was significantly lower and slightly changed during the surveyed area: for 90Sr in the range of 6.0 Γ· 8.1 Bq/kg (mean 6.8), for 137Cs – 0.6 Γ· 1.9 Bq/kg (mean 1.3). Assessment for compliance with radiation safety criteria using the indicator of compliance and its uncertainty (Π’+Ξ”Π’) confirmed the unsuitability of use for food purposes by the radiation factor of all studied fish species from the Techa river (45Γ·55 >1). Fish from all other studied areas of the Ob-Irtysh river system can be used for food without restrictions (0,06Γ·0,53 < 1). The distribution of 90Sr and 137Cs in the ichthyofauna of the Ob-Irtysh river system part over a 2400 km is presented in the form of empirical regression models. The models describe a sharp decrease in the radionuclides specific activity in fish in the Techa and Iset rivers by two orders for 90Sr (from 2000 to 20 Bq/kg), and by one order for 137Cs (from 40 to 2 Bq/kg). With a high degree of reliability (R2>0.86 for 90Sr and R2>0.92 for 137Cs), the presence of power relationships between the content of radionuclides in the ichthyofauna and their content in water was shown, with adequacy confirmed by Fisher’s F-criteria. This can be used for a preliminary assessment of the radionuclides level in fish based on the results of measurements of the average annual concentrations of these radionuclides in water.ЦСлью настоящСй Ρ€Π°Π±ΠΎΡ‚Ρ‹ являСтся Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎ-гигиСничСская ΠΎΡ†Π΅Π½ΠΊΠ° содСрТания 90Sr ΠΈ 137Cs Π² Ρ€Ρ‹Π±Π΅ Обь-Π˜Ρ€Ρ‚Ρ‹ΡˆΡΠΊΠΎΠΉ Ρ€Π΅Ρ‡Π½ΠΎΠΉ систСмы ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ основных закономСрностСй накоплСния Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΠΈΡ…Ρ‚ΠΈΠΎΡ„Π°ΡƒΠ½Π΅ этих Ρ€Π΅ΠΊ. Для выполнСния Π΄Π°Π½Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ Π±Ρ‹Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½ΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ радиоэкологичСских исслСдований Ρ€Ρ‹Π±Ρ‹ ΠΈΠ· Ρ€Π΅ΠΊ Π’Π΅Ρ‡Π°, Π˜Ρ€Ρ‚Ρ‹Ρˆ ΠΈ Обь Π·Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ 2004–2016 Π³Π³. Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° ΠΎΡ†Π΅Π½ΠΊΠ° Ρ€Ρ‹Π±Ρ‹ ΠΊΠ°ΠΊ ΠΏΠΈΡ‰Π΅Π²ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π° ΠΏΠΎ Π΄Π²ΡƒΠΌ критСриям: Π°) допустимыС ΡƒΡ€ΠΎΠ²Π½ΠΈ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ активности Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² (БанПиН 2.3.2.1078-01); Π±) с использованиСм показатСля соотвСтствия Π’ ΠΈ нСопрСдСлСнности Π΅Π³ΠΎ опрСдСлСния Ξ”Π’ (Π“ΠžΠ‘Π’ 32161-2013 ΠΈ Π“ΠžΠ‘Π’ 32163-2013). Показано, Ρ‡Ρ‚ΠΎ Π±ΠΎΠ»Π΅Π΅ высокоС содСрТаниС Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ Π² ΠΈΡ…Ρ‚ΠΈΠΎΡ„Π°ΡƒΠ½Π΅ Ρ€Π΅ΠΊΠΈ Π’Π΅Ρ‡Π° (1379,1 Π‘ΠΊ/ΠΊΠ³ ΠΏΠΎ 90Sr ΠΈ 41,9 Π‘ΠΊ/ΠΊΠ³ ΠΏΠΎ 137Cs). На Ρ€Π΅ΠΊΠ°Ρ… Обь ΠΈ Π˜Ρ€Ρ‚Ρ‹Ρˆ срСдниС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ активности Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² Ρ€Ρ‹Π±Π΅ Π±Ρ‹Π»ΠΈ сущСствСнно Π½ΠΈΠΆΠ΅ ΠΈ слабо измСнялись Π½Π° протяТСнии обслСдованного участка: для 90Sr Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 6,0–8,1 Π‘ΠΊ/ΠΊΠ³ (срСднСС 6,8), для 137Cs – 0,6–1,9 Π‘ΠΊ/ΠΊΠ³ (срСднСС 1,3). ΠžΡ†Π΅Π½ΠΊΠ° Π½Π° соотвСтствиС критСриям Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ бСзопасности с использованиСм показатСля соотвСтствия Π’ ΠΈ Π΅Π³ΠΎ нСопрСдСлСнности Ξ”Π’ (Π’+Ξ”Π’) ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΠ»Π° Π½Π΅ΠΏΡ€ΠΈΠ³ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒ использования Π² ΠΏΠΈΡ‰Π΅Π²Ρ‹Ρ… цСлях ΠΏΠΎ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΌΡƒ Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρƒ всСх исслСдованных Π²ΠΈΠ΄ΠΎΠ² Ρ€Ρ‹Π± ΠΈΠ· Ρ€. Π’Π΅Ρ‡ΠΈ (45–55 >1). Π Ρ‹Π±Π° ΠΈΠ· всСх ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдованных участков Обь-Π˜Ρ€Ρ‚Ρ‹ΡˆΡΠΊΠΎΠΉ Ρ€Π΅Ρ‡Π½ΠΎΠΉ систСмы ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использована Π² ΠΏΠΈΡ‰Ρƒ Π±Π΅Π· ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠΉ (0,06–0,53 < 1). ЗакономСрности распрСдСлСния 90Sr ΠΈ 137Cs Π² ΠΈΡ…Ρ‚ΠΈΠΎΡ„Π°ΡƒΠ½Π΅ Обь-Π˜Ρ€Ρ‚Ρ‹ΡˆΡΠΊΠΎΠΉ Ρ€Π΅Ρ‡Π½ΠΎΠΉ систСмы Π½Π° участкС ΠΏΡ€ΠΎΡ‚ΡΠΆΠ΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ 2400 ΠΊΠΌ прСдставлСны Π² Π²ΠΈΠ΄Π΅ эмпиричСских рСгрСссионных ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ. МодСли ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ Ρ€Π΅Π·ΠΊΠΎΠ΅ сниТСниС ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ активности Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² Ρ€Ρ‹Π±Π΅ Π½Π° участкС Ρ€Π΅ΠΊ Π’Π΅Ρ‡Π° – Π˜ΡΠ΅Ρ‚ΡŒ Π½Π° Π΄Π²Π° порядка Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ ΠΏΠΎ 90Sr (с 2000 Π΄ΠΎ 20 Π‘ΠΊ/ΠΊΠ³) ΠΈ Π½Π° ΠΎΠ΄ΠΈΠ½ порядок ΠΏΠΎ 137Cs (с 40 Π΄ΠΎ 2 Π‘ΠΊ/ΠΊΠ³). Π‘ высокой ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ достовСрности (R2 >0,86 для 90Sr ΠΈ R2 >0,92 для 137Cs) ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ стСпСнных зависимостСй ΠΌΠ΅ΠΆΠ΄Ρƒ содСрТаниСм Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΠΈΡ…Ρ‚ΠΈΠΎΡ„Π°ΡƒΠ½Π΅ ΠΈ ΠΈΡ… содСрТаниСм Π² Π²ΠΎΠ΄Π΅, с Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ, ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π½ΠΎΠΉ критСриями Π€ΠΈΡˆΠ΅Ρ€Π°. Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использовано для ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΎΡ†Π΅Π½ΠΊΠΈ уровня содСрТания Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² Ρ€Ρ‹Π±Π΅ Π½Π° основС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ срСднСгодовых ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ этих Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² Π²ΠΎΠ΄Π΅

    Π Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³ ΠΏΠΈΡ‚ΡŒΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Ρ‹ Π² Ρ€Π°ΠΉΠΎΠ½Π΅ БСлоярской АЭБ

    Get PDF
    The article provides a radiation-hygienic assessment of the current state of drinking water supply sources for the population in the observation area of the the Beloyarsk NPP and the Institute of Nuclear Materials. We determined the content of natural (234U, 238U, 226Ra, 228Ra, 210Po, 222Rn, 210Pb, 228Th, 230Th, 232Th) and technogenic (3H, 14C, 60Co, 90Sr, 134Cs, 137Cs, 238Pu, 239,240Pu, 241Am) radionuclides in drinking water of tap water, water boreholes and water wells in test settlements located at different distances and directions from radiation hazardous facilities. Results of monitoring of water sources in 2012–2013 and 2019 showed the radiation safety of drinking water in the vicinity of the Beloyarsk NPP according to several criteria. Thus, the maximum levels of the gross specific alpha-activity of radionuclides in water samples were 3.9 times lower than the control level (0.2 Bq/kg), the gross specific beta-activity was 5.7 times lower than the control level (1 Bq/ kg). Over the entire observation period, none of the drinking water samples exceeded the control levels both for individual radionuclides and for the sum of the ratios of specific activities to control levels. The content of natural and artificial radionuclides in drinking water near the Beloyarsk NPP decreases in the following order: water wells > water boreholes > tap water. For the past 20 years, there was a decrease in tritium specific activity in drinking water of the Beloyarsk NPP region by 20–35%, depending on the source of water supply. It was noted that the launch of the BN-800 reactor also did not lead to an increase in the content of other artificial radionuclides (90Sr, 137Cs) in groundwater. The average annual effective dose of internal exposure of the population due to drinking water consumption in the vicinity of the Beloyarsk NPP is 0.05 mSv, according to conservative estimates – 0.07 mSv, which is below the radiation safety threshold (0.1 mSv/a) recommended by the WHO. Natural radionuclides play the primary role in the formation of the annual average effective dose for internal irradiation (98.9%) due to drinking water consumption on the considered territories. 210Po makes the largest contribution to the dose from natural radioisotopes – 43%, somewhat less is made by 210Pb – 25%. The third place in the dose formation from natural radionuclides belongs to 234U (8%), 228Ra (7%), 226Ra (6%) and 230Th (6%). The contribution of other natural radioisotopes in the formation of the internal radiation dose from drinking water consumption does not exceed 2-3%. The contribution of technogenic radionuclides to the annual average effective dose from the consumption of drinking water is negligible (about 1%). Of the technogenic components, 90Sr (60%), 3H (20%), and 241Am (12%) play the most significant role in the formation of the internal exposure dose.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Π΄Π°Π½Π° Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎ-гигиСничСская ΠΎΡ†Π΅Π½ΠΊΠ° соврСмСнного состояния источников ΠΏΠΈΡ‚ΡŒΠ΅Π²ΠΎΠ³ΠΎ водоснабТСния насСлСния Π² Π·ΠΎΠ½Π΅ наблюдСния БСлоярской АЭБ ΠΈ Π˜Π½ΡΡ‚ΠΈΡ‚ΡƒΡ‚Π° Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ². На ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ тСстовых насСлСнных ΠΏΡƒΠ½ΠΊΡ‚ΠΎΠ², располоТСнных Π½Π° Ρ€Π°Π·Π½ΠΎΠΌ расстоянии ΠΈ направлСниях ΠΎΡ‚ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎ-опасных ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ², ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ содСрТаниС ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… (234U, 238U, 226Ra, 228Ra, 210Po, 222Rn, 210Pb, 228Th, 230Th, 232Th) ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… (3H, 14C, 60Co, 90Sr, 134Cs, 137Cs, 238Pu, 239,240Pu, 241Am) Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΠΏΠΈΡ‚ΡŒΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Π΅ Π²ΠΎΠ΄ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠ², скваТин ΠΈ ΠΊΠΎΠ»ΠΎΠ΄Ρ†Π΅Π². Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° источников водопользования Π² 2012–2013 Π³Π³. ΠΈ Π² 2019 Π³. ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΡƒΡŽ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΈΡ‚ΡŒΠ΅Π²Ρ‹Ρ… Π²ΠΎΠ΄ Π² Ρ€Π΅Π³ΠΈΠΎΠ½Π΅ БСлоярской АЭБ ΠΏΠΎ ряду ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π². Π’Π°ΠΊ, ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΡƒΡ€ΠΎΠ²Π½ΠΈ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ суммарной Π°Π»ΡŒΡ„Π°-активности Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΠΏΡ€ΠΎΠ±Π°Ρ… Π±Ρ‹Π»ΠΈ Π² 3,9 Ρ€Π°Π·Π° Π½ΠΈΠΆΠ΅ критСрия ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΎΡ†Π΅Π½ΠΊΠΈ соотвСтствия Π²ΠΎΠ΄Ρ‹ трСбованиям Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ бСзопасности (0,2 Π‘ΠΊ/ΠΊΠ³), ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ суммарной Π±Π΅Ρ‚Π°-активности – Π² 5,7 Ρ€Π°Π·Π° мСньшС Π΄Π°Π½Π½ΠΎΠ³ΠΎ критСрия (1 Π‘ΠΊ/ΠΊΠ³). Π—Π° вСсь ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ наблюдСний Π½ΠΈ Π² ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΏΡ€ΠΎΠ± ΠΏΠΈΡ‚ΡŒΠ΅Π²Ρ‹Ρ… Π²ΠΎΠ΄ Π½Π΅ Π±Ρ‹Π»ΠΈ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ΅Π½Ρ‹ ΠΊΠ°ΠΊ ΡƒΡ€ΠΎΠ²Π½ΠΈ Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° ΠΏΠΎ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΌ Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄Π°ΠΌ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ ΠŸΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ 2Π° ΠΊ НРБ-99/2009, Ρ‚Π°ΠΊ ΠΈ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ соотвСтствия ΠΏΠΈΡ‚ΡŒΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Ρ‹ трСбованиям Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ бСзопасности – сумма ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ ΡƒΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… активностСй Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² ΠΊ уровням Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Π½Π΅ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π»Π° 1. Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΠΏΠΈΡ‚ΡŒΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Π΅ Ρ€Π°ΠΉΠΎΠ½Π° БСлоярской АЭБ сниТаСтся Π² ряду: ΠΊΠΎΠ»ΠΎΠ΄Ρ†Ρ‹ > скваТины > Π²ΠΎΠ΄ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Ρ‹. Показано ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ Π·Π° послСдниС 20 Π»Π΅Ρ‚ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ активности трития Π² ΠΏΠΈΡ‚ΡŒΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Π΅ Ρ€Π°ΠΉΠΎΠ½Π° БСлоярской АЭБ Π½Π° 20–35% Π² зависимости ΠΎΡ‚ источника водоснабТСния. ΠžΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π½Π°Ρ‡Π°Π»ΠΎ эксплуатации Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° БН-800 Π½Π΅ ΠΏΡ€ΠΈΠ²Π΅Π»ΠΎ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ содСрТания Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² (90Sr, 137Cs) Π² ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½Ρ‹Ρ… Π²ΠΎΠ΄Π°Ρ…. БрСдняя годовая эффСктивная Π΄ΠΎΠ·Π° Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ облучСния насСлСния ΠΎΡ‚ потрСблСния ΠΏΠΈΡ‚ΡŒΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Ρ‹ Π² Π·ΠΎΠ½Π΅ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ влияния БСлоярской АЭБ составляСт 0,05 ΠΌΠ—Π², ΠΏΠΎ консСрвативным ΠΎΡ†Π΅Π½ΠΊΠ°ΠΌ – 0,07 ΠΌΠ—Π², Ρ‡Ρ‚ΠΎ Π½ΠΈΠΆΠ΅ Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π΄ΠΎΠ·ΠΎΠ²ΠΎΠ³ΠΎ уровня ΠΎΠΆΠΈΠ΄Π°Π΅ΠΌΠΎΠΉ эффСктивной Π΄ΠΎΠ·Ρ‹ Π·Π° счСт потрСблСния ΠΏΠΈΡ‚ΡŒΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Ρ‹ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π³ΠΎΠ΄Π° (0,1 ΠΌΠ—Π²/ Π³ΠΎΠ΄), Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π’ΠžΠ—. Основной Π²ΠΊΠ»Π°Π΄ Π² Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ срСднСй Π³ΠΎΠ΄ΠΎΠ²ΠΎΠΉ эффСктивной Π΄ΠΎΠ·Ρ‹ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ облучСния насСлСния (98,9%) ΠΎΡ‚ потрСблСния ΠΏΠΈΡ‚ΡŒΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Ρ‹ Π² Ρ€Π°ΠΉΠΎΠ½Π΅ БСлоярской АЭБ вносят ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Π΅ Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄Ρ‹. Наибольший Π²ΠΊΠ»Π°Π΄ Π² Π΄ΠΎΠ·Ρƒ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ облучСния Π·Π° счСт потрСблСния ΠΏΠΈΡ‚ΡŒΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Ρ‹ ΠΎΡ‚ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… Ρ€Π°Π΄ΠΈΠΎΠΈΠ·ΠΎΡ‚ΠΎΠΏΠΎΠ² вносит 210Po – 43%, нСсколько мСньший 210Pb – 25%. На Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΌ мСстС Π² Π΄ΠΎΠ·ΠΎΡ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΎΡ‚ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² находятся: 234U (8%), 228Ra (7%), 226Ra (6%) ΠΈ 230Th (6%). Роль ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… Ρ€Π°Π΄ΠΈΠΎΠΈΠ·ΠΎΡ‚ΠΎΠΏΠΎΠ² Π² Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π΄ΠΎΠ·Ρ‹ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ облучСния ΠΎΡ‚ потрСблСния ΠΏΠΈΡ‚ΡŒΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Ρ‹ Π½Π΅ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ 2–3%. Π’ΠΊΠ»Π°Π΄ Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΡΡ€Π΅Π΄Π½ΡŽΡŽ Π³ΠΎΠ΄ΠΎΠ²ΡƒΡŽ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΡƒΡŽ Π΄ΠΎΠ·Ρƒ ΠΎΡ‚ потрСблСния ΠΏΠΈΡ‚ΡŒΠ΅Π²ΠΎΠΉ Π²ΠΎΠ΄Ρ‹ Π½ΠΈΡ‡Ρ‚ΠΎΠΆΠ½ΠΎ ΠΌΠ°Π» (ΠΎΠΊΠΎΠ»ΠΎ 1%). ΠžΡ‚ Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ наибольший Π²ΠΊΠ»Π°Π΄ Π² Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄ΠΎΠ·Ρ‹ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ облучСния вносят 90Sr (60%), 3H (20%) ΠΈ 241Am (12%)

    ΠžΡ†Π΅Π½ΠΊΠ° влияния эксплуатации Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° БН-800 Π½Π° содСрТаниС Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² мСстных ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°Ρ… питания Ρ€Π°ΠΉΠΎΠ½Π° БСлоярской АЭБ

    Get PDF
    The research results are presented as an analysis of long-term data on the effect of gas-aerosol emissions and liquid discharges of Beloyarsk NPP and the Institute of Reactor Materials on the content of artificial radionuclides in local foodstuffs. It was noted that the distance and directions from radiation-hazardous facilities do not significantly affect the accumulation of 90Sr and 137Cs in potatoes and milk. The investigation of a wide range of foodstuffs from the private households of 23 settlements, forests, rivers, and a reservoir of the 30-km zone of the Beloyarsk NPP influence showed that the operation of the BN-800 reactor since 2016 did not lead to a registered increase in the content of artificial radionuclides in agricultural and natural foodstuffs. The maximum specific activities of 90Sr (0.84 Bq/kg) and 137Cs (0.26 Bq/kg) in root vegetables, potatoes, melons and vegetables were noted before the start of operation of the new power unit and were 45 and 300 times, respectively, lower than the current SanPiN standards. The highest content of 90Sr in milk (0.41 Bq/l) was 60 times lower than the requirements of SanPiN, 137Cs (0.11 Bq/l) was 900 times less than the permissible levels. In poultry, the specific activity of 90Sr (0.2-0.3 Bq/kg) and 137Cs (0.13-0.16 Bq/kg) has remained stable low in recent years, and the standardised content of 137Cs in beef (maximum 0.12 Bq/kg) more than 1.5 thousand times lower than the requirements of SanPiN. The highest concentration of 137Cs in wild berries, found in strawberries (1.27 Bq/kg), was 125 times less than SanPiN standards. The content of 90Sr in mushrooms was at the level of 0.1-2.5 Bq/kg, the content of 137Cs is slightly higher than - 0.6-5.8 Bq/kg. The maximum recorded specific activity of 137Cs in mushrooms was more than 80 times lower than the requirements of SanPiN. During the observation period, a decrease of up to 20% or more in the content of artificial radionuclides in samples of 5 fish species was noted; the maximum levels of 90Sr and 137Cs in it were 14 times lower than the strictest SanPiN standards (using fish for baby food). Selective radiation monitoring of foodstuffs of Beloyarsk NPP area aimed at 3H and 14C showed that the content of these radionuclides in foodstuffs was low, close to the background level. In agricultural products, 3H and 14C accumulated to a greater extent in potatoes and milk, and in natural products – in rough boletus and bream. There was noted a need to continue research on the accumulation of 3H and 14C in foodstuffs of Beloyarsk NPP vicinity.Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ прСдставлСн Π°Π½Π°Π»ΠΈΠ· ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½ΠΈΡ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎ влиянию Π³Π°Π·ΠΎΠ°ΡΡ€ΠΎΠ·ΠΎΠ»ΡŒΠ½Ρ‹Ρ… выбросов ΠΈ ΠΆΠΈΠ΄ΠΊΠΈΡ… сбросов БСлоярской АЭБ ΠΈ Π˜Π½ΡΡ‚ΠΈΡ‚ΡƒΡ‚Π° Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Π½Π° содСрТаниС Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² мСстных ΠΏΠΈΡ‰Π΅Π²Ρ‹Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°Ρ…. ΠžΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ расстояниС ΠΈ направлСния ΠΎΡ‚ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎ опасных ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² Π·Π½Π°Ρ‡ΠΈΠΌΠΎ Π½Π΅ Π²Π»ΠΈΡΡŽΡ‚ Π½Π° Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ 90Sr ΠΈ 137Cs Π² ΠΊΠ°Ρ€Ρ‚ΠΎΡ„Π΅Π»Π΅ ΠΈ ΠΌΠΎΠ»ΠΎΠΊΠ΅. На ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ ряда ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² питания ΠΈΠ· частного сСктора 23 насСлСнных ΠΏΡƒΠ½ΠΊΡ‚ΠΎΠ², лСсов, Ρ€Π΅ΠΊ ΠΈ Π²ΠΎΠ΄ΠΎΡ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π° 30-ΠΊΠΈΠ»ΠΎΠΌΠ΅Ρ‚Ρ€Π²ΠΎΠΉ Π·ΠΎΠ½Ρ‹ влияния БСлоярской АЭБ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ эксплуатация с 2016 Π³. Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° БН-800 Π½Π΅ ΠΏΡ€ΠΈΠ²Π΅Π»Π° ΠΊ рСгистрируСмому ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ содСрТания Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΡΠ΅Π»ΡŒΡΠΊΠΎΡ…ΠΎΠ·ΡΠΉΡΡ‚Π²Π΅Π½Π½ΠΎΠΉ ΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΈΡ‰Π΅Π²ΠΎΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ. ΠœΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΡƒΠ΄Π΅Π»ΡŒΠ½Ρ‹Π΅ активности 90Sr (0,84 Π‘ΠΊ/ΠΊΠ³) ΠΈ 137Cs (0,26 Π‘ΠΊ/ΠΊΠ³) Π² ΠΊΠΎΡ€Π½Π΅ΠΏΠ»ΠΎΠ΄Π°Ρ…, ΠΊΠ°Ρ€Ρ‚ΠΎΡ„Π΅Π»Π΅, Π±Π°Ρ…Ρ‡Π΅Π²Ρ‹Ρ… ΠΈ ΠΎΠ²ΠΎΡ‰Π°Ρ… ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈΡΡŒ Π΄ΠΎ Π½Π°Ρ‡Π°Π»Π° эксплуатации Π½ΠΎΠ²ΠΎΠ³ΠΎ энСргоблока ΠΈ Π±Ρ‹Π»ΠΈ Π² 45 ΠΈ 300 Ρ€Π°Π· соотвСтствСнно Π½ΠΈΠΆΠ΅ Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²ΠΎΠ² БанПиН. НаиболСС высокоС содСрТаниС Π² ΠΌΠΎΠ»ΠΎΠΊΠ΅ 90Sr (0,41 Π‘ΠΊ/Π») Π±Ρ‹Π»ΠΎ Π² 60 Ρ€Π°Π· Π½ΠΈΠΆΠ΅ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ БанПиН, 137Cs (0,11 Π‘ΠΊ/Π») Π² 900 Ρ€Π°Π· мСньшС Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²ΠΎΠ². Π’ мясС домашнСй ΠΏΡ‚ΠΈΡ†Ρ‹ ΡƒΠ΄Π΅Π»ΡŒΠ½Π°Ρ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ 90Sr (0,2–0,3 Π‘ΠΊ/ΠΊΠ³) ΠΈ 137Cs (0,13–0,16 Π‘ΠΊ/ΠΊΠ³) Π² послСдниС Π³ΠΎΠ΄Ρ‹ остаСтся ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎ Π½ΠΈΠ·ΠΊΠΎΠΉ, Π° Π½ΠΎΡ€ΠΌΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ΅ содСрТаниС 137Cs Π² говядинС (максимально – 0,12 Π‘ΠΊ/ΠΊΠ³) Π±ΠΎΠ»Π΅Π΅ Ρ‡Π΅ΠΌ Π² 1,5 тыс. Ρ€Π°Π· Π½ΠΈΠΆΠ΅ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ БанПиН. НаиболСС высокая концСнтрация 137Cs Π² лСсных ягодах, обнаруТСнная Π² зСмляникС (1,27 Π‘ΠΊ/ΠΊΠ³), мСньшС Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²ΠΎΠ² БанПиН Π² 125 Ρ€Π°Π·. Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ 90Sr Π² Π³Ρ€ΠΈΠ±Π°Ρ… находится Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ 0,1–2,5 Π‘ΠΊ/ΠΊΠ³, 137Cs нСсколько Π²Ρ‹ΡˆΠ΅ – 0,6–5,8 Π‘ΠΊ/ΠΊΠ³. Максимально зафиксированная ΡƒΠ΄Π΅Π»ΡŒΠ½Π°Ρ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ 137Cs Π² Π³Ρ€ΠΈΠ±Π°Ρ… Π½ΠΈΠΆΠ΅ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ БанПиН Π±ΠΎΠ»Π΅Π΅ Ρ‡Π΅ΠΌ Π² 80 Ρ€Π°Π·. ΠžΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ Π·Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ наблюдСний Π΄ΠΎ 20% ΠΈ Π±ΠΎΠ»Π΅Π΅ содСрТания Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΠΏΡ€ΠΎΠ±Π°Ρ… 5 Π²ΠΈΠ΄ΠΎΠ² Ρ€Ρ‹Π±; ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΡƒΡ€ΠΎΠ²Π½ΠΈ 90Sr ΠΈ 137Cs Π² Π½Π΅ΠΉ Π±Ρ‹Π»ΠΈ Π½ΠΈΠΆΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ТСстких Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²ΠΎΠ² БанПиН (использованиС Ρ€Ρ‹Π±Ρ‹ для дСтского питания) Π² 14 Ρ€Π°Π·. Π’Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½Ρ‹ΠΉ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ ΠΏΠΈΡ‰Π΅Π²Ρ‹Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² Ρ€Π°ΠΉΠΎΠ½Π° БСлоярской АЭБ Π½Π° 3H ΠΈ 14C ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ содСрТаниС этих Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°Ρ… питания находится Π½Π° Π½ΠΈΠ·ΠΊΠΎΠΌ, Π±Π»ΠΈΠ·ΠΊΠΎΠΌ ΠΊ Ρ„ΠΎΠ½ΠΎΠ²ΠΎΠΌΡƒ ΡƒΡ€ΠΎΠ²Π½Π΅. Π’ ΡΠ΅Π»ΡŒΡΠΊΠΎΡ…ΠΎΠ·ΡΠΉΡΡ‚Π²Π΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ 3H ΠΈ 14C Π² большСй стСпСни Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π² ΠΊΠ°Ρ€Ρ‚ΠΎΡ„Π΅Π»Π΅ ΠΈ ΠΌΠΎΠ»ΠΎΠΊΠ΅, ΠΈΠ· ΠΏΡ€ΠΈ- Ρ€ΠΎΠ΄Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² Π² ΠΏΠΎΠ΄Π±Π΅Ρ€Π΅Π·ΠΎΠ²ΠΈΠΊΠ΅ ΠΈ Π»Π΅Ρ‰Π΅. ΠžΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ продолТСния исслСдований ΠΏΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ накоплСния 3H ΠΈ 14C Π² ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°Ρ… питания Ρ€Π°ΠΉΠΎΠ½Π° БСлоярской АЭБ

    Combustion of liquid fuel in rectangular mini and microchannels

    Full text link
    It is shown that flame spread rate can be high and comparable with velocities of flame propagation in the stoichiometric homogeneous gas mixture. The flame spread rate depends on velocity of oxidizer. It can either increase or decrease with arise of oxidizer velocity, depending on the oxygen content. The flame surface is significantly distorted with increase in average flame spread rate. It is shown that the flame spread rate can be significant and comparable with the laminar burning velocity of the stoichiometric homogeneous gaseous mixture
    corecore