431 research outputs found

    Decay of a charged scalar and Dirac fields in the Kerr-Newman-de Sitter background

    Full text link
    We find the quasinormal modes of the charged scalar and Dirac fields in the background of the rotating charged black holes, described by the Kerr-Newman-de Sitter solution. The dependence of the quasinormal spectrum upon the black hole parameters mass M, angular momentum a, charge Q, as well as on values of the \Lambda-term and field charge q is investigated. Special attention is given to the near extremal limit of the black hole charge. In particular, we find that for both scalar and Dirac fields, charged perturbations decay quicker for q>0 and slower for q<0 for values of black holes charge Q less than than some threshold value, which is close to the extremal value of charge and depend on parameters of the black holes.Comment: Phys. Rev. D, in pres

    How to tell the shape of a wormhole by its quasinormal modes

    Full text link
    Here we shall show how to reconstruct the shape function of a spherically symmetric traversable Lorenzian wormhole near its throat if one knows high frequency quasinormal modes of the wormhole. The wormhole spacetime is given by the Morris-Thorne ansatz. The solution to the inverse problem via fitting of the parameters within the WKB approach is unique for arbitrary tideless wormholes and some wormholes with non-zero tidal effects, but this is not so for arbitrary wormholes. As examples, we reproduce the near throat geometries of the Bronnikov-Ellis and tideless Morris-Thorne metrics by their quasinormal modes at high multipole numbers â„“\ell.Comment: 8 pages, revtex4, 1 figure; version accepted for publication in Physics Letters

    Long life of Gauss-Bonnet corrected black holes

    Full text link
    Dictated by the string theory and various higher dimensional scenarios, black holes in D>4D>4-dimensional space-times must have higher curvature corrections. The first and dominant term is quadratic in curvature, and called the Gauss-Bonnet (GB) term. We shall show that although the Gauss-Bonnet correction changes black hole's geometry only softly, the emission of gravitons is suppressed by many orders even at quite small values of the GB coupling. The huge suppression of the graviton emission is due to the multiplication of the two effects: the quick cooling of the black hole when one turns on the GB coupling and the exponential decreasing of the grey-body factor of the tensor type of gravitons at small and moderate energies. At higher DD the tensor gravitons emission is dominant, so that the overall lifetime of black holes with Gauss-Bonnet corrections is many orders larger than was expected. This effect should be relevant for the future experiments at the Large Hadron Collider (LHC). Keywords: Hawking radiation, black hole evaporation.Comment: 13 pages, 14 figure
    • …
    corecore