20 research outputs found

    БотулинотСрапия Π² Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ дистоничСского сколиоза ΠΏΡ€ΠΈ Π³Π΅Π½Π΅Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΉ дистонии (клиничСскоС наблюдСниС)

    Get PDF
    Dystonic scoliosis as one of the forms of generalized dystonia is a highly disabling form of dystonia, which can lead to damage to internal organs (lungs, heart) and the peripheral nervous system, including the spinal cord. Almost always, those muscles that are involved in the formation of a dystonic posture in generalized dystonia have not been studied in terms of the effectiveness of treatment with botulinum toxin type A and are not reflected in the instructions. As a result, there is no understanding of the general motor interaction with differentiation into targeted and non-targeted muscles, administration doses and control methods.The aim of the work was to evaluate the efficacy and tolerability of high doses of botulinum toxin type A in dystonic scoliosis, as well as to present the introduction of botulinum toxin type A using ultrasound and electromyographic control. We have described a clinical case of a 19-year-old patient suffering from generalized dystonia with S-shaped dystonic scoliosis of the III degree. Deep brain stimulation was recommended as a treatment for the patient. During the waiting period for the timing of the operation, we attempted symptomatic therapy using the drug incobotulotoxin A. Over the next year and a half, 700 units of botulinum toxin type A were administered under ultrasound and electromyographic control every 3–4 months. As a result, treatment of trunk dystonia in the patient during the observation period led to a clinically significant decrease in the degree of curvature (from 37Β° to 27Β°, from III to II degree of scoliosis) in the absence of undesirable effects of the drug, including generalized muscle weakness. According to the repeated conclusion of the council of neurosurgeons, surgical intervention is not indicated for the patient due to the positive effect of the introduction of botulinum toxin type A.ДистоничСский сколиоз ΠΊΠ°ΠΊ ΠΎΠ΄Π½Π° ΠΈΠ· Ρ„ΠΎΡ€ΠΌ Π³Π΅Π½Π΅Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΉ дистонии являСтся Π²Ρ‹ΡΠΎΠΊΠΎΠΈΠ½Π²Π°Π»ΠΈΠ΄ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΠΎΠΉ дистонии, которая ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΡŽ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΎΠ² (Π»Π΅Π³ΠΊΠΈΡ…, сСрдца) ΠΈ пСрифСричСской Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмы, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ спинной ΠΌΠΎΠ·Π³. Π’ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ случаСв ΠΌΡ‹ΡˆΡ†Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π² Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ дистоничСской ΠΏΠΎΠ·Ρ‹ ΠΏΡ€ΠΈ Π³Π΅Π½Π΅Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΉ дистонии, ΠΈΡΡΠ»Π΅Π΄ΡƒΡŽΡ‚ΡΡ ΠΌΠ°Π»ΠΎ Π² ΠΏΠ»Π°Π½Π΅ эффСктивности лСчСния ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌΠΈ ботулиничСского токсина Ρ‚ΠΈΠΏΠ° А ΠΈ, ΠΊΠ°ΠΊ слСдствиС, Π½Π΅ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Ρ‹ Π² инструкциях. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ отсутствуСт мСтодичСскоС ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΎΠ±Ρ‰Π΅Π³ΠΎ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ взаимодСйствия с Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠΎΠΉ Π½Π° Ρ‚Π°Ρ€Π³Π΅Ρ‚Π½Ρ‹Π΅ ΠΈ Π½Π΅ Ρ‚Π°Ρ€Π³Π΅Ρ‚Π½Ρ‹Π΅ ΠΌΡ‹ΡˆΡ†Ρ‹, Π΄ΠΎΠ·Ρ‹ ввСдСния ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² контроля.ЦСль настоящСй Ρ€Π°Π±ΠΎΡ‚Ρ‹ – ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ ΠΏΠ΅Ρ€Π΅Π½ΠΎΡΠΈΠΌΠΎΡΡ‚ΡŒ высоких Π΄ΠΎΠ· ботулиничСского токсина Ρ‚ΠΈΠΏΠ° А ΠΏΡ€ΠΈ дистоничСском сколиозС, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ возмоТности ввСдСния ботулиничСского токсина Ρ‚ΠΈΠΏΠ° А с использованиСм ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΈ элСктромиографичСского контроля.Нами описан клиничСский ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° 19 Π»Π΅Ρ‚, ΡΡ‚Ρ€Π°Π΄Π°ΡŽΡ‰Π΅Π³ΠΎ Π³Π΅Π½Π΅Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΉ дистониСй с Π‘-ΠΎΠ±Ρ€Π°Π·Π½Ρ‹ΠΌ дистоничСским сколиозом III стСпСни. Π’ качСствС лСчСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρƒ Π±Ρ‹Π»Π° Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π° глубокая стимуляция Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°. Π’ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ оТидания сроков ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Π½Π°ΠΌΠΈ Π±Ρ‹Π»Π° прСдпринята ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠ° симптоматичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ с использованиСм ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° инкоботулотоксина А. Π’ Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… ΠΏΠΎΠ»ΡƒΡ‚ΠΎΡ€Π° Π»Π΅Ρ‚ Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ 700 Π•Π” ботулиничСского токсина А ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΠΎΠ΄ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²Ρ‹ΠΌ ΠΈ элСктромиографичСским ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ ΠΊΠ°ΠΆΠ΄Ρ‹Π΅ 3–4 мСс. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° Π·Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ наблюдСния Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ дистонии Ρ‚ΡƒΠ»ΠΎΠ²ΠΈΡ‰Π° ΠΏΡ€ΠΈΠ²Π΅Π»ΠΎ ΠΊ клиничСски достовСрному сниТСнию градуса искривлСния (с 37 Π΄ΠΎ 27Β°, с III Π΄ΠΎ II стСпСни сколиоза) ΠΏΡ€ΠΈ отсутствии Π½Π΅ΠΆΠ΅Π»Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… явлСний дСйствия ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π³Π΅Π½Π΅Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡƒΡŽ ΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΡƒΡŽ ΡΠ»Π°Π±ΠΎΡΡ‚ΡŒ. Богласно ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π½ΠΎΠΌΡƒ Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡŽ консилиума Π½Π΅ΠΉΡ€ΠΎΡ…ΠΈΡ€ΡƒΡ€Π³ΠΎΠ², ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρƒ Π½Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π²Π²ΠΈΠ΄Ρƒ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ эффСкта ΠΎΡ‚ ввСдСния ботулиничСского токсина Ρ‚ΠΈΠΏΠ° А

    Electrical, Hemodynamic, and Motor Activity in BCI Post-stroke Rehabilitation: Clinical Case Study

    Get PDF
    The goal of the paper is to present an example of integrated analysis of electrical, hemodynamic, and motor activity accompanying the motor function recovery in a post-stroke patient having an extensive cortical lesion. The patient underwent a course of neurorehabilitation assisted with the hand exoskeleton controlled by brain-computer interface based on kinesthetic motor imagery. The BCI classifier was based on discriminating covariance matrices of EEG corresponding to motor imagery. The clinical data from three successive 2 weeks hospitalizations with 4 and 8 month intervals, respectively were under analysis. The rehabilitation outcome was measured by Fugl-Meyer scale and biomechanical analysis. Both measures indicate prominent improvement of the motor function of the paretic arm after each hospitalization. The analysis of brain activity resulted in three main findings. First, the sources of EEG activity in the intact brain areas, most specific to motor imagery, were similar to the patterns we observed earlier in both healthy subjects and post-stroke patients with mild subcortical lesions. Second, two sources of task-specific activity were localized in primary somatosensory areas near the lesion edge. The sources exhibit independent mu-rhythm activity with the peak frequency significantly lower than that of mu-rhythm in healthy subjects. The peculiarities of the detected source activity underlie changes in EEG covariance matrices during motor imagery, thus serving as the BCI biomarkers. Third, the fMRI data processing showed significant reduction in size of areas activated during the paretic hand movement imagery and increase for those activated during the intact hand movement imagery, shifting the activations to the same level. This might be regarded as the general index of the motor recovery. We conclude that the integrated analysis of EEG, fMRI, and motor activity allows to account for the reorganization of different levels of the motor system and to provide a comprehensive basis for adequate assessment of the BCI+ exoskeleton rehabilitation efficiency

    EFFICACY OF COMPLEX NEUROREHABILITATION OF PATIENTS WITH A POST-STROKE ARM PARESIS WITH THE USE OF A BRAIN-COMPUTER INTERFACE+EXOSKELETON SYSTEM

    No full text
    Background: Rehabilitation of patients with poststroke motor disorders with the use of aΒ brain-computer interface (BCI)+exoskeleton may raise the rehabilitation to aΒ  new high-tech level and allow for an effective correction of the post-stroke dysfunction. Aim: To assess the efficacy of BCI+exoskeleton procedures for neurorehabilitation of patients with post-stroke motor dysfunction. Materials and methods: The study included 40Β patients with aΒ history of cerebral stroke (mean age 59Β±10.4Β years, 26Β male and 14Β female). Thirty six of them had had an ischemic stroke and 4, aΒ hemorrhagic stroke from 2Β months to 4Β years before the study entry. All patients had aΒ various degree post-stroke hemiparesis predominantly of the arm. The main group patients (n=20), in addition to conventional therapy, had 10Β  sessions (3Β  times daily) of BCI+exoskeleton. The BCI recognized the hand ungripping imagined by the patient and, by aΒ  feedback signal, the exoskeleton exerted the passive movement in the paretic arm. The control group patients (n=10) had 10Β  BCI+exoskeleton sessions without imaginary movements, and the exoskeleton functioned in aΒ  random mode. The comparison group included 10Β  patients who received only standard treatment. Results: At the end of rehabilitation treatment (day 14), all study groups demonstrated an improvement in the function of the paretic extremity. There was an improvement of functioning and daily activities in the main group, compared to the control and the comparison groups: the change in the modified Rankin scale score was 0.4Β±0.1, 0.1Β±0.1Β  and 0Β±0.2 (p<0.05), in the Bartel scale score, 5.6Β±0.8, 2.3Β±0.3 andΒ 1Β±0.2 (p<0.001), respectively. In the BCI+exoskeleton group the motor function of the paretic arm assessed by the ARAT scale, improved by 5.5Β±1.3Β  points (2.4Β±0.6Β  points in the control group and 1.9Β±0.7Β  in the comparison group, Ρ€<0.05), and as assessed by the Fugl-Meyer scale, by 10.8Β±1.5Β points (3.8Β±1.05Β points in the comparison group, p<0.001). Conclusion: Rehabilitation of patients with post-stroke paresis with the use of BCI+exoskeleton led not also to aΒ decrease in neurological deficit and an improvement of the paretic arm motor function, but also improved parameters of daily activities. Further studies of the effects of BCI+exoskeleton rehabilitation procedures on the course of motor function restoration are planned
    corecore