15 research outputs found

    The structure of ESKAPE pathogens isolated from patients of the neonatal intensive care unit at the National Hospital of Pediatrics in Hanoi, the Socialist Republic of Vietnam

    Get PDF
    Introduction. The incidence of healthcare-associated infections is a major public health problem worldwide, affecting all countries regardless of their economic status. The main agents of these infections are pathogens belonging to the ESKAPE group. The aim of the study was to explore the structure, molecular and antigenic characteristics of the ESKAPE pathogens isolated from oral and anal mucosa of patients of the neonatal intensive care unit (NICU), and to assess their etiological significance in occurrence of healthcare-associated infections. Materials and methods. Samples from a total of 49 children were tested, including 40 newborns patients of NICU at the National Hospital of Pediatrics in Hanoi. Collection and processing of biomaterial (oropharyngeal swabs, rectal swabs) and isolation of bacterial cultures were performed using conventional bacteriological methods. Mass spectrometry was used for identification of isolates. Klebsiella pneumoniae strains were analyzed using the whole-genome sequencing method. Results. The group of gram-positive ESKAPE pathogens identified in oral mucosa was represented by isolates Enterococcus faecium and Staphylococcus aureus. The isolates of the family Enterobacteriaceae included K. pneumoniae, Escherichia coli, Enterobacter cloacae; the group of nonfermenting gram-negative bacteria was represented by Pseudomonas aeruginosa, Acinetobacter baumannii. The structure of ESKAPE pathogens persistent in anal mucosa was characterized by dominance of Enterococcus spp., E. coli, K. pneumoniae and P. aeruginosa bacteria. The whole-genome sequencing of K. pneumoniae isolates revealed 7 clusters and 8 sequence types. ST14 and ST1741 prevailed, accounting for 25%, respectively, of the total number of the studied strains. The molecular serotyping showed that by the O antigen, strains belonged mainly to serotypes O1v1, O1/ O2v2, O5; by the presence of the capsular antigen to serotypes KL2, KL104, KL60. Conclusion. The analysis of the structure of the ESKAPE pathogens isolated from the oral and anal mucosa of patients of NICU at the National Hospital of Pediatrics in Hanoi identified etiologically significant agents of bacterial infections: S. aureus, K. pneumoniae, E. coli, E. cloacae, P. aeruginosa, A. baumannii. The molecular and genetic analysis of K. pneumoniae strains co-circulating in mucous membranes of several patients of the unit revealed their homology, thus confirming healthcare-associated contamination of children with nosocomial strains

    BIOLOGICAL PROPERTIES AND MOLECULAR-GENETIC CHARACTERISTICS OF BACILLUS ANTHRACIS STRAINS, ISOLATED DURING THE OUTBREAK OF ANTHRAX IN THE YAMALO-NENETS AUTONOMOUS DISTRICT IN 2016

    Get PDF
    Objective of the study was to identify phenotypic properties and genetic peculiarities of Bacillus anthracis strains, isolated during the outbreak of anthrax in the territory of Yamal in 2016. Materials and methods. Investigated were the strains of anthrax agent, applying basic and subsequent identification tests and canSNP-, MLVA-genotyping methods and whole genome sequencing. Results and conclusions. The results showed the identity of the phenotypic properties, canSNPand MLVA25-genotypes, and profiles of whole genome-sequencing, regardless of the source of the strains isolation. Confirmed was a common source of human infection. Defined were phylogenetic interrelations of the tested strains and their position in global B. anthracis population. For the first time ever explored was variability of the gene pattern, associated with pathogenicity, and demonstrated – the efficiency of the proposed algorithm for genetic typing

    Plasmids Carrying Antimicrobial Resistance Genes in Gram-Negative Bacteria

    No full text
    Gram-negative bacteria are prevalent pathogens associated with hospital-acquired infections (HAI) that are a major challenge for patient safety, especially in intensive care units [...

    Effect of Natural Polymorphism on Structure and Function of the Yersinia Pestis Outer Membrane Porin F (OmpF Protein): a Computational Study

    No full text
    The Yersinia pestis outer membrane porin F (OmpF) is a transmembrane protein located in the outer membrane of this Gram-negative bacterium which is the causative agent of plague, where it plays a significant role in controlling the selective permeability of the membrane. The amino acid sequences of OmpF proteins from 48 Y. pestis strains representing all currently available phylogenetic groups of this Gram-negative bacterium were recently deduced. Comparison of these amino acid sequences revealed that the OmpF can be present in four isoforms, the pestis-pestis type, and the pestis-microtus types I, II, and III. OmpF of the most recent pestis-pestis type has an alanine residue at the position 148, where all the pestis-microtus types have threonine there (T148A polymorphism). The variability of different pestis-microtus types is caused by an additional polymorphism at the 193rd position, where the OmpFs of the pestis-microtus type II and type III have isoleucine-glycine (IG+193) or isoleucine-glycine-isoleucine-glycine (IGIG+193) insertions, respectively (IG+193 and IGIG+193 polymorphism). To investigate potential effects of these sequence polymorphisms on the structural properties of the OmpF protein, we conducted multi-level computational analysis of its isoforms. Analysis of the I-TASSER-generated 3D-models revealed that the Yersinia OmpF is very similar to other non-specific enterobacterial porins. The T148A polymorphism affected a loop located in the external vestibule of the OmpF channel, whereas IG+193 and IGIG+193 polymorphisms affected one of its β-strands. Our analysis also suggested that polymorphism has moderate effect on the predicted local intrinsic disorder predisposition of OmpF, but might have some functional implementations

    High-Molecular-Weight Plasmids Carrying Carbapenemase Genes <i>bla</i><sub>NDM-1</sub>, <i>bla</i><sub>KPC-2</sub>, and <i>bla</i><sub>OXA-48</sub> Coexisting in Clinical <i>Klebsiella pneumoniae</i> Strains of ST39

    No full text
    Background: Klebsiella pneumoniae, a member of the ESKAPE group of bacterial pathogens, has developed multi-antimicrobial resistance (AMR), including resistance to carbapenems, which has increased alarmingly due to the acquisition of carbapenemase genes located on specific plasmids. Methods: Four clinical K. pneumoniae isolates were collected from four patients of a neuro-intensive care unit in Moscow, Russia, during the point prevalence survey. The AMR phenotype was estimated using the Vitec-2 instrument, and whole genome sequencing (WGS) was done using Illumina and Nanopore technologies. Results: All strains were resistant to beta-lactams, nitrofurans, fluoroquinolones, sulfonamides, aminoglycosides, and tetracyclines. WGS analysis revealed that all strains were closely related to K. pneumoniae ST39, capsular type K-23, with 99.99% chromosome identity. The novelty of the study is the description of the strains carrying simultaneously three large plasmids of the IncHI1B, IncC, and IncFIB groups carrying the carbapenemase genes of three types, blaOXA-48, blaNDM-1, and blaKPC-2, respectively. The first of them, highly identical in all strains, was a hybrid plasmid that combined two regions of the resistance genes (blaOXA-48 and blaTEM-1 + blaCTX-M-15 + blaOXA-1 + catB + qnrS1 + int1) and a region of the virulence genes (iucABCD, iutA, terC, and rmpA2::IS110). Conclusion: The spread of K. pneumoniae strains carrying multiple plasmids conferring resistance even to last-resort antibiotics is of great clinical concern

    Early Response of Antimicrobial Resistance and Virulence Genes Expression in Classical, Hypervirulent, and Hybrid hvKp-MDR Klebsiella pneumoniae on Antimicrobial Stress

    No full text
    Klebsiella pneumoniae is an increasingly important hospital pathogen. Classical K. pneumoniae (cKp) and hypervirulent K. pneumoniae (hvKp) are two distinct evolutionary genetic lines. The recently ongoing evolution of K. pneumoniae resulted in the generation of hybrid hvKP-MDR strains. K. pneumoniae distinct isolates (n = 70) belonged to 20 sequence types with the prevalence of ST395 (27.1%), ST23 (18.6%), ST147 (15.7%), and ST86 (7.1%), and 17 capsular types with the predominance of K2 (31.4%), K57 (18.6%), K64 (10.0%), K1 (5.7%) were isolated from patients of the Moscow neurosurgery ICU in 2014&ndash;2019. The rate of multi-drug resistant (MDR) and carbapenem-resistant phenotypes were 84.3% and 45.7%, respectively. Whole-genome sequencing of five selected strains belonging to cKp (ST395K47 and ST147K64), hvKp (ST86K2), and hvKp-MDR (ST23K1 and ST23K57) revealed blaSHV, blaTEM, blaCTX, blaOXA-48, and blaNDM beta-lactamase genes; acr, oqx, kpn, kde, and kex efflux genes; and K. pneumoniae virulence genes. Selective pressure of 100 mg/L ampicillin or 10 mg/L ceftriaxone induced changes of expression levels for named genes in the strains belonging to cKp, hvKp, and hybrid hvKp-MDR. Obtained results seem to be important for epidemiologists and clinicians for enhancing knowledge about hospital pathogens

    Genomic Analysis of a Hybrid Enteroaggregative Hemorrhagic Escherichia coli O181:H4 Strain Causing Colitis with Hemolytic-Uremic Syndrome

    No full text
    Hybrid diarrheagenic E. coli strains combining genetic markers belonging to different pathotypes have emerged worldwide and have been reported as a public health concern. The most well-known hybrid strain of enteroaggregative hemorrhagic E. coli is E. coli O104:H4 strain, which was an agent of a serious outbreak of acute gastroenteritis and hemolytic uremic syndrome (HUS) in Germany in 2011. A case of intestinal infection with HUS in St. Petersburg (Russian Federation) occurred in July 2018. E. coli strain SCPM-O-B-9427 was obtained from the rectal swab of the patient with HUS. It was determined as O181:H4-, stx2-, and aggR-positive and belonged to the phylogenetic group B2. The complete genome assembly of the strain SCPM-O-B-9427 contained one chromosome and five plasmids, including the plasmid coding an aggregative adherence fimbriae I. MLST analysis showed that the strain SCPM-O-B-9427 belonged to ST678, and like E. coli O104:H4 strains, 2011C-3493 caused the German outbreak in 2011, and 2009EL-2050 was isolated in the Republic of Georgia in 2009. Comparison of three strains showed almost the same structure of their chromosomes: the plasmids pAA and the stx2a phages are very similar, but they have distinct sets of the plasmids and some unique regions in the chromosomes
    corecore