50 research outputs found
BIOCOMPATIBLE BIOMIMETIC POLYMER STRUCTURES WITH AN ACTIVE RESPONSE FOR IMPLANTOLOGY AND REGENERATIVE MEDICINE PART I: BASIC PRINCIPLES OF THE ACTIVE IMPLANTβS BIOCOMPATIBILITY
Physical and chemical criteria of biocompatibility of the active polymer implants and stimuli-responsive scaffolds are considered. From the standpoint of the surface physics and controlled wetting, the possibilities of dynamic control of biocompatibility and adaptive changes in the implant properties in response to the signal from the surrounding tissues are considered. The basic properties of the active biocompatible and biomimetic implantable materials, which distinguish them from the passive implants, are summarized. The latter include: electrophysical and electrophysiological membrane biocompatibility (up to the analogy with biomembranes β the so-called Fendlerβs βmembrane mimeticsβ); excitability, that is, the ability to qualitatively change their state in response to the external stimulus; compatibility of the matching parameters and impedances of biomembranes and active implantable materials; the presence of the main types of the energy conversion characteristic of biomembranes (chemiosmotic, electrochemical, electromechanical, etc.); the ability to transport and release pharmaceuticals consistent with the parameters of the cellular microenvironment and regulated by its state. Due to the qualitative change in the biomedical aim of such implants (from replacing the natural function to its regeneration and maintenance), there is a possibility of implementing various new biologically relevant functions using these materials, such as the ability to sensing and actuation, based on their reactivity and signal / energy conversion capacity. Of particular interest is the adaptive realization of the above functions in a growing and developing organism during its ontogenesis
Role discovery in node-attributed public transportation networks: the model description
Modeling public transport systems from the standpoint of the theory of complex networks is of great importance to improve their efficiency and reliability. An important task here is to analyze the roles of nodes and weighted links in
the network, respectively modeling groups of public transport stops and their linking routes. In previous works, this problem was solved based on only topological and geospatial information about the presence of routes between stops and their geographical location which led to the problem of uninterpretability of the discovered roles. In this article,
to solve the problem, the model additionally considers information about the social infrastructure around the stops and discovers topological, geospatial, and infrastructure roles jointly. The public transport system is modeled using a special weighted network β with node attributes where nodes are non-overlapping groups of stops united by geospatial
location, node attributes are vectors containing information about the social infrastructure around stops, and weighted links integrate information about the distance and number of transfers in routes between stops. To identify the model, it is sufficient to use only open urban data on the public transport system. Role discovery for stops is carried out by clustering network nodes in accordance with their topological and attributive features. An extended model of the public transport system and a new approach to solving the problem of discovering the roles of stops, providing interpretability from the topological, geospatial and infrastructural points of view, are proposed. The model was identified on the open data of Saint Petersburg about metro stations, trolleybus and bus stops as well as organizations and enterprises around the
stations and stops. Based on the data, balanced parameters for grouping stops, assigning link weights and constructing attribute vectors are found for further use in the role discovery task. The results of the study can be used to identify
transport and infrastructure shortcomings of real public transport systems which should be considered to improve the functioning of these systems in the future
Nonlinear ion-acoustic (IA) waves driven in a cylindrically symmetric flow
By employing a self-similar, two-fluid MHD model in a cylindrical geometry,
we study the features of nonlinear ion-acoustic (IA) waves which propagate in
the direction of external magnetic field lines in space plasmas. Numerical
calculations not only expose the well-known three shapes of nonlinear
structures (sinusoidal, sawtooth, and spiky or bipolar) which are observed by
numerous satellites and simulated by models in a Cartesian geometry, but also
illustrate new results, such as, two reversely propagating nonlinear waves,
density dips and humps, diverging and converging electric shocks, etc. A case
study on Cluster satellite data is also introduced.Comment: accepted by AS
Π£Π»ΡΡΡΠ°ΡΠΈΠΎΠ»Π΅ΡΠΎΠ²ΠΎΠ΅ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΠ΅ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎβΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ°Π·ΡΡΠ΄ΠΎΠ² Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π² ΠΊΡΠ΅Π½ΠΎΠ½Π΅
Pulsed quartz-jacketed high-pressure xenon lamps, operating in the periodic pulse repetition modes, despite the appearing UV radiation sources of other types, remain a critical component of the processing equipment used in photochemistry, photo-medicine, nanoelectronics, biology, etc. Their main advantages, namely high power and radiation energy are slightly devalued by a relatively low efficiency of the shortwave radiation. Available literature data concerning the influence of various factors on the energy level of short-wave radiation in xenon need to be systematised and generalised because they have been obtained under conditions of uncontrolled quartz-jacketed transmission. The transmission of quartz can degrade after a while and, in addition, undergo great changes during the pulse. Besides, as a rule, in the literature, there is no detailed description of a complete kit of experimental setting. As a result, to analyse the factors affecting the efficiency of studying in the UV range is difficult, and there arises a relevant problem to optimise this type of discharge parameters to increase the efficiency in the range of 220-400 nm. A mathematical model of the radiation source, realistically describing the processes in the xenon plasma and in the stabilising envelope, can be a reliable ground for such a study. The paper shows an impact of the discharge channel diameter and length, the filling pressure of xenon, the pulse duration, the parameters of discharge circuit, and the current of pilot arc on the radiation yield. Based on the simulation-found relationship of internal plasma parameters (temperature distributions, fields of particle concentration and radiation, dynamics of electrical resistance of discharge channel, and plasma emission spectra) with radiation characteristics of discharge, are determined conditions to ensure the greatest radiation yield in the UV region. Β The experimental data prove the computational results. A material obtained gives practice-critical guidelines for development and correct selection of the short-wave radiation source.ΠΠΌΠΏΡΠ»ΡΡΠ½ΡΠ΅ ΠΊΡΠ΅Π½ΠΎΠ½ΠΎΠ²ΡΠ΅ Π»Π°ΠΌΠΏΡ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π² ΠΊΠ²Π°ΡΡΠ΅Π²ΠΎΠΉ ΠΎΠ±ΠΎΠ»ΠΎΡΠΊΠ΅, ΡΠ°Π±ΠΎΡΠ°ΡΡΠΈΠ΅ Π² ΡΠ΅ΠΆΠΈΠΌΠ°Ρ
ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ², Π½Π΅ΡΠΌΠΎΡΡΡ Π½Π° ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² Π£Π€- ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Π΄ΡΡΠ³ΠΈΡ
ΡΠΈΠΏΠΎΠ² ΠΎΡΡΠ°ΡΡΡΡ Π²Π°ΠΆΠ½Π΅ΠΉΡΠΈΠΌ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠΌ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΠ±ΠΎΡΡΠ΄ΠΎΠ²Π°Π½ΠΈΡ, ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌΠΎΠ³ΠΎ Π² ΡΠΎΡΠΎΡ
ΠΈΠΌΠΈΠΈ, ΡΠΎΡΠΎΠΌΠ΅Π΄ΠΈΡΠΈΠ½Π΅, Π½Π°Π½ΠΎΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΈΠΊΠ΅, Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ Ρ.Π΄. ΠΠ»Π°Π²Π½ΡΠ΅ ΠΈΡ
Π΄ΠΎΡΡΠΎΠΈΠ½ΡΡΠ²Π° -Β Π²ΡΡΠΎΠΊΠ°Ρ ΠΌΠΎΡΠ½ΠΎΡΡΡ ΠΈ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ - Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΎΠ±Π΅ΡΡΠ΅Π½ΠΈΠ²Π°Π΅Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½ΠΈΠ·ΠΊΠ°Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Π² ΠΊΠΎΡΠΎΡΠΊΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ. ΠΠΌΠ΅ΡΡΠΈΠ΅ΡΡ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠ°ΠΊΡΠΎΡΠΎΠ² Π½Π° ΡΡΠΎΠ²Π΅Π½Ρ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΊΠΎΡΠΎΡΠΊΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ ΡΠ°Π·ΡΡΠ΄ΠΎΠ² Π² ΠΊΡΠ΅Π½ΠΎΠ½Π΅ Π½ΡΠΆΠ΄Π°ΡΡΡΡ Π² ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·Π°ΡΠΈΠΈ ΠΈ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΠΈ, Ρ.ΠΊ. ΠΎΠ½ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π½Π΅ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΠ΅ΠΌΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΏΡΡΠΊΠ°Π½ΠΈΡ ΠΊΠ²Π°ΡΡΠ΅Π²ΠΎΠΉ ΠΎΠ±ΠΎΠ»ΠΎΡΠΊΠΈ. ΠΡΠΎΠΏΡΡΠΊΠ°Π½ΠΈΠ΅ ΠΊΠ²Π°ΡΡΠ° ΠΌΠΎΠΆΠ΅Ρ Π΄Π΅Π³ΡΠ°Π΄ΠΈΡΠΎΠ²Π°ΡΡ ΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ ΠΈ, ΠΊΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ,Β ΡΠΈΠ»ΡΠ½ΠΎ ΠΌΠ΅Π½ΡΡΡΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΈΠΌΠΏΡΠ»ΡΡΠ°. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ,Β Π² Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅ ΠΎΡΡΡΡΡΡΠ²ΡΠ΅Ρ, ΠΊΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π΄Π΅ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡΠ° ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°. Π ΠΈΡΠΎΠ³Π΅ Π°Π½Π°Π»ΠΈΠ· ΡΠ°ΠΊΡΠΎΡΠΎΠ², Π²Π»ΠΈΡΡΡΠΈΡ
Π½Π°Β ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π² Π£Π€- ΠΎΠ±Π»Π°ΡΡΠΈ Π·Π°ΡΡΡΠ΄Π½Π΅Π½, ΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ Π°ΠΊΡΡΠ°Π»ΡΠ½Π°Ρ Π·Π°Π΄Π°ΡΠ° ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ°Π·ΡΡΠ΄ΠΎΠ² ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΈΠΏΠ° Ρ ΡΠ΅Π»ΡΡ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ ΠΠΠ Π² ΠΎΠ±Π»Π°ΡΡΠΈ 220-400 Π½ΠΌ. ΠΠ°Π΄Π΅ΠΆΠ½ΠΎΠΉ ΠΎΡΠ½ΠΎΠ²ΠΎΠΉ Π΄Π»Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ°ΠΊΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΠΌΠΎΠΆΠ΅Ρ ΡΠ»ΡΠΆΠΈΡΡ ΡΠ°ΡΡΠ΅ΡΠ½ΠΎ- ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡΒ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ, ΡΠ΅Π°Π»ΠΈΡΡΠΈΡΠ½ΠΎ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΠ΅ΠΉ ΠΏΡΠΎΡΠ΅ΡΡΡ Π² ΠΏΠ»Π°Π·ΠΌΠ΅ ΠΊΡΠ΅Π½ΠΎΠ½Π° ΠΈ ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·ΠΈΡΡΡΡΠ΅ΠΉ ΠΎΠ±ΠΎΠ»ΠΎΡΠΊΠ΅. Π ΡΠ°Π±ΠΎΡΠ΅Β ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½Π°Β Π²ΡΡ
ΠΎΠ΄ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠ° ΠΈ Π΄Π»ΠΈΠ½Ρ ΡΠ°Π·ΡΡΠ΄Π½ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Π°, Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π½Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΊΡΠ΅Π½ΠΎΠ½Π°, Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠ°, ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ°Π·ΡΡΠ΄Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΡΡΠ°, ΡΠΎΠΊΠ° Π΄Π΅ΠΆΡΡΠ½ΠΎΠΉ Π΄ΡΠ³ΠΈ. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°Π΅ΠΌΠΎΠΉ ΠΏΡΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ²ΡΠ·ΠΈ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΏΠ»Π°Π·ΠΌΡ (ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΡΡ
ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ, ΠΏΠΎΠ»Π΅ΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΡΠ°ΡΡΠΈΡ ΠΈ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΈ, Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΊΠ°Π½Π°Π»Π° ΡΠ°Π·ΡΡΠ΄Π° ΠΈ ΡΠΏΠ΅ΠΊΡΡΠΎΠ² ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ ΠΏΠ»Π°Π·ΠΌΡ) Ρ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΡΠΌΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌΠΈ ΡΠ°Π·ΡΡΠ΄Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ ΡΡΠ»ΠΎΠ²ΠΈΡ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡΠΈΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠΉ Π²ΡΡ
ΠΎΠ΄ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Π² Π£Π€- ΠΎΠ±Π»Π°ΡΡΠΈ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉΒ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½Ρ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΌΠΈ Π΄Π°Π½Π½ΡΠΌΠΈ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΉΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» Π΄Π°Π΅Ρ Π²Π°ΠΆΠ½ΡΠ΅ Π΄Π»Ρ ΠΏΡΠ°ΠΊΡΠΈΠΊΠΈ ΠΎΡΠΈΠ΅Π½ΡΠΈΡΡ Π΄Π»Ρ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΈ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ±ΠΎΡΠ° ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠΎΡΠΊΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°
ΠΠ°Π·Π΅ΡΠ½ΠΈΠΉ ΡΠΎΠΏΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΠΉ ΡΠΏΠ΅ΠΊΠ»-Π°Π½Π°Π»ΡΠ·Π°ΡΠΎΡ ΠΏΡΠΎΠ»ΡΡΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎΡ ΡΠ° Π΄ΠΈΡΠ΅ΡΠ΅Π½ΡΡΠ°ΡΡΠΉΠ½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π² ΠΊΡΠ»ΡΡΡΡΠ°Π»ΡΠ½ΠΎΠΌΡ ΠΌΠΎΡΡΠΎΠ³Π΅Π½Π΅Π·Ρ.
An automated system for morpho-topological determination of cell division phases and structural differentiation of tissues during morphogenesis was implemented on the basis of topological properties of cell cultures, considered within the framework of set and manifold theories. A simple robotic hardware and software system based on Zeiss microscope with a modified stage and a Velleman manipulator KSR-1 allow to control the laser module position, carrying out the angular irradiation of samples either in transmission or in darkfield or luminescent modes and the subsequent mathematical data processing. This low-budget system can be easily assembled and programmed in any cytomorphological or histomorphological laboratory. The code for data processing in MATLAB is given at the end of the paper.Π Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π° Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΎ-ΡΠΎΠΏΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ°Π· Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΈ ΡΡΡΡΠΊΡΡΡΠ½ΠΎΠΉ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°ΡΠΈΠΈ ΡΠΊΠ°Π½Π΅ΠΉ Π² Ρ
ΠΎΠ΄Π΅ ΠΌΠΎΡΡΠΎΠ³Π΅Π½Π΅Π·Π°, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½Π°Ρ Π½Π° ΡΠΎΠΏΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ²Π°Ρ
ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
ΠΊΡΠ»ΡΡΡΡ, ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΡΡ
Π² ΡΠ°ΠΌΠΊΠ°Ρ
Π½Π°ΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ². ΠΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΠΉ ΡΠΎΠ±ΠΎΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΠΎ-Π°ΠΏΠΏΠ°ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡ Π½Π° Π±Π°Π·Π΅ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠ° Zeiss Ρ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠ½ΡΠΌ ΡΡΠΎΠ»ΠΈΠΊΠΎΠΌ ΠΈ ΠΌΠ°Π½ΠΈΠΏΡΠ»ΡΡΠΎΡΠ° Velleman ΠΌΠΎΠ΄Π΅Π»ΠΈ KSR-1 ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠΏΡΠ°Π²Π»ΡΡΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π»Π°Π·Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ, ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ΅ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΊΠ°ΠΊ Π² ΡΡΠ°Π½ΡΠΌΠΈΡΡΠΈΠΎΠ½Π½ΠΎΠΌ, ΡΠ°ΠΊ ΠΈ Π² ΡΠ΅ΠΌΠ½ΠΎΠΏΠΎΠ»ΡΠ½ΠΎΠΌ ΠΈΠ»ΠΈ Π»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠ½ΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ°Ρ
, ΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΡΡ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΡΠ΅Π³ΠΈΡΡΡΠ°ΡΠΈΠΈ. ΠΠ°Π½Π½Π°Ρ Π½ΠΈΠ·ΠΊΠΎΠ±ΡΠ΄ΠΆΠ΅ΡΠ½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠΎΠ±ΡΠ°Π½Π° ΠΈ Π·Π°ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠΈΡΠΎΠ²Π°Π½Π° Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΡΠΈΡΠΎΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈΠ»ΠΈ Π³ΠΈΡΡΠΎΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠΈΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ΄ΡΡΡΠ½ΡΡ
ΡΡΠ΅Π΄ΡΡΠ². ΠΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΡΠΉ ΠΊΠΎΠ΄ Π΄Π»Ρ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π΄Π°Π½Π½ΡΡ
Π² MATLAB ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡΡΡ Π² ΡΠ΅ΠΊΡΡΠ΅ ΡΡΠ°ΡΡΠΈ.Π Π΅Π°Π»ΡΠ·ΠΎΠ²Π°Π½Π° Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·ΠΎΠ²Π°Π½Π° ΡΠΈΡΡΠ΅ΠΌΠ° ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΎ-ΡΠΎΠΏΠΎΠ»ΠΎΒΠ³ΡΡΒΠ½ΠΎΒΠ³ΠΎ Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ ΡΠ°Π· ΠΏΠΎΠ΄ΡΠ»Ρ ΠΊΠ»ΡΡΠΈΠ½ Ρ ΡΡΡΡΠΊΡΡΡΠ½ΠΎΡ Π΄ΠΈΡΠ΅ΡΠ΅Π½ΡΡΠ°ΡΡΡ ΡΠΊΠ°Π½ΠΈΠ½ Ρ Ρ
ΠΎΠ΄Ρ ΠΌΠΎΡΡΠΎΠ³Π΅Π½Π΅Π·Ρ, Π·Π°ΡΠ½ΠΎΠ²Π°Π½Π° Π½Π° ΡΠΎΠΏΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΡ
Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΡΡ
ΠΊΠ»ΡΡΠΈΠ½Π½ΠΈΡ
ΠΊΡΠ»ΡΡΡΡ, ΡΠΎ ΡΠΎΠ·Π³Π»ΡΠ΄Π°ΡΡΡΡΡ Π² ΡΠ°ΠΌΠΊΠ°Ρ
Π½Π°ΡΠ²Π½ΠΎΡ ΡΠ΅ΠΎΡΡΡ ΠΌΠ½ΠΎΠΆΠΈΠ½. ΠΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΠΈΠΉ ΡΠΎΠ±ΠΎΡΠΈΠ·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠ½ΠΎ-Π°ΠΏΠ°ΡΠ°ΡΠ½ΠΈΠΉ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡ Π½Π° Π±Π°Π·Ρ ΠΌΡΠΊΡΠΎΡΠΊΠΎΠΏΠ° Zeiss Π· ΠΌΠΎΠ΄ΠΈΡΡΠΊΠΎΠ²Π°Π½ΠΈΠΌ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠ½ΠΈΠΌ ΡΡΠΎΠ»ΠΈΠΊΠΎΠΌ Ρ ΠΌΠ°Π½ΡΠΏΡΠ»ΡΡΠΎΡΠ° Velleman ΠΌΠΎΠ΄Π΅Π»Ρ KSR-1 Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡ ΠΊΠ΅ΡΡΠ²Π°ΡΠΈ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΡΠΌ Π»Π°Π·Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ, Π·Π΄ΡΠΉΡΠ½ΡΡΡΠΈ ΠΊΡΡΠΎΠ²Π΅ ΠΎΠΏΡΠΎΠΌΡΠ½Π΅Π½Π½Ρ Π·ΡΠ°Π·ΠΊΡΠ² ΡΠΊ Π² ΡΡΠ°Π½ΡΠΌΡΡΡΠΉΠ½ΠΎΠΌΡ, ΡΠ°ΠΊ Ρ Π² ΡΠ΅ΠΌΠ½ΠΎΠΏΠΎΠ»ΡΠ½ΠΎΠΌΡ Π°Π±ΠΎ Π»ΡΠΌΡΠ½Π΅ΡΡΠ΅Π½ΡΠ½ΠΎΠΌΡ ΡΠ΅ΠΆΠΈΠΌΠ°Ρ
, Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ½Ρ ΠΎΠ±ΡΠΎΠ±ΠΊΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡΠ² ΡΠ΅ΡΡΡΡΠ°ΡΡΡ. ΠΠ°Π½Π° ΠΌΠ°Π»ΠΎΠ±ΡΠ΄ΠΆΠ΅ΡΠ½Π° ΡΠΈΡΡΠ΅ΠΌΠ° ΠΌΠΎΠΆΠ΅ Π±ΡΡΠΈ Π·ΡΠ±ΡΠ°Π½Π° Ρ Π·Π°ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΎΠ²Π°Π½Π° Π² ΡΠΌΠΎΠ²Π°Ρ
ΡΠΈΡΠΎΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΡ Π°Π±ΠΎ Π³ΡΡΡΠΎΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΡ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΡΡ Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ ΠΏΡΠ΄ΡΡΡΠ½ΠΈΡ
Π·Π°ΡΠΎΠ±ΡΠ². ΠΡΠΎΠ³ΡΠ°ΠΌΠ½ΠΈΠΉ ΠΊΠΎΠ΄ Π΄Π»Ρ ΠΎΠ±ΡΠΎΠ±ΠΊΠΈ Π΄Π°Π½ΠΈΡ
Ρ MATLAB Π½Π°Π²ΠΎΠ΄ΠΈΡΡΡΡ Π² ΡΠ΅ΠΊΡΡΡ ΡΡΠ°ΡΡΡ
Microwave-induced self-organization in mineral systems. III. FeCl3 colloid (200 W; 2.45 GHz; 1 min)
Microwave-induced self-organization of membraneous structures with different morphology in hydrolized FeCl3 colloid (200 W, 2.45 GHz,1 min). The local MW treatment conditions and the precoursor layer thickness determine the type of emerging structures