50 research outputs found

    BIOCOMPATIBLE BIOMIMETIC POLYMER STRUCTURES WITH AN ACTIVE RESPONSE FOR IMPLANTOLOGY AND REGENERATIVE MEDICINE PART I: BASIC PRINCIPLES OF THE ACTIVE IMPLANT’S BIOCOMPATIBILITY

    Get PDF
    Physical and chemical criteria of biocompatibility of the active polymer implants and stimuli-responsive scaffolds are considered. From the standpoint of the surface physics and controlled wetting, the possibilities of dynamic control of biocompatibility and adaptive changes in the implant properties in response to the signal from the surrounding tissues are considered. The basic properties of the active biocompatible and biomimetic implantable materials, which distinguish them from the passive implants, are summarized. The latter include: electrophysical and electrophysiological membrane biocompatibility (up to the analogy with biomembranes – the so-called Fendler’s β€œmembrane mimetics”); excitability, that is, the ability to qualitatively change their state in response to the external stimulus; compatibility of the matching parameters and impedances of biomembranes and active implantable materials; the presence of the main types of the energy conversion characteristic of biomembranes (chemiosmotic, electrochemical, electromechanical, etc.); the ability to transport and release pharmaceuticals consistent with the parameters of the cellular microenvironment and regulated by its state. Due to the qualitative change in the biomedical aim of such implants (from replacing the natural function to its regeneration and maintenance), there is a possibility of implementing various new biologically relevant functions using these materials, such as the ability to sensing and actuation, based on their reactivity and signal / energy conversion capacity. Of particular interest is the adaptive realization of the above functions in a growing and developing organism during its ontogenesis

    Role discovery in node-attributed public transportation networks: the model description

    Get PDF
    Modeling public transport systems from the standpoint of the theory of complex networks is of great importance to improve their efficiency and reliability. An important task here is to analyze the roles of nodes and weighted links in the network, respectively modeling groups of public transport stops and their linking routes. In previous works, this problem was solved based on only topological and geospatial information about the presence of routes between stops and their geographical location which led to the problem of uninterpretability of the discovered roles. In this article, to solve the problem, the model additionally considers information about the social infrastructure around the stops and discovers topological, geospatial, and infrastructure roles jointly. The public transport system is modeled using a special weighted network β€” with node attributes where nodes are non-overlapping groups of stops united by geospatial location, node attributes are vectors containing information about the social infrastructure around stops, and weighted links integrate information about the distance and number of transfers in routes between stops. To identify the model, it is sufficient to use only open urban data on the public transport system. Role discovery for stops is carried out by clustering network nodes in accordance with their topological and attributive features. An extended model of the public transport system and a new approach to solving the problem of discovering the roles of stops, providing interpretability from the topological, geospatial and infrastructural points of view, are proposed. The model was identified on the open data of Saint Petersburg about metro stations, trolleybus and bus stops as well as organizations and enterprises around the stations and stops. Based on the data, balanced parameters for grouping stops, assigning link weights and constructing attribute vectors are found for further use in the role discovery task. The results of the study can be used to identify transport and infrastructure shortcomings of real public transport systems which should be considered to improve the functioning of these systems in the future

    Nonlinear ion-acoustic (IA) waves driven in a cylindrically symmetric flow

    Full text link
    By employing a self-similar, two-fluid MHD model in a cylindrical geometry, we study the features of nonlinear ion-acoustic (IA) waves which propagate in the direction of external magnetic field lines in space plasmas. Numerical calculations not only expose the well-known three shapes of nonlinear structures (sinusoidal, sawtooth, and spiky or bipolar) which are observed by numerous satellites and simulated by models in a Cartesian geometry, but also illustrate new results, such as, two reversely propagating nonlinear waves, density dips and humps, diverging and converging electric shocks, etc. A case study on Cluster satellite data is also introduced.Comment: accepted by AS

    Π£Π»ΡŒΡ‚Ρ€Π°Ρ„ΠΈΠΎΠ»Π΅Ρ‚ΠΎΠ²ΠΎΠ΅ ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎβ€“ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π΅ΡΠΊΠΈΡ… разрядов высокого давлСния Π² ксСнонС

    Get PDF
    Pulsed quartz-jacketed high-pressure xenon lamps, operating in the periodic pulse repetition modes, despite the appearing UV radiation sources of other types, remain a critical component of the processing equipment used in photochemistry, photo-medicine, nanoelectronics, biology, etc. Their main advantages, namely high power and radiation energy are slightly devalued by a relatively low efficiency of the shortwave radiation. Available literature data concerning the influence of various factors on the energy level of short-wave radiation in xenon need to be systematised and generalised because they have been obtained under conditions of uncontrolled quartz-jacketed transmission. The transmission of quartz can degrade after a while and, in addition, undergo great changes during the pulse. Besides, as a rule, in the literature, there is no detailed description of a complete kit of experimental setting. As a result, to analyse the factors affecting the efficiency of studying in the UV range is difficult, and there arises a relevant problem to optimise this type of discharge parameters to increase the efficiency in the range of 220-400 nm. A mathematical model of the radiation source, realistically describing the processes in the xenon plasma and in the stabilising envelope, can be a reliable ground for such a study. The paper shows an impact of the discharge channel diameter and length, the filling pressure of xenon, the pulse duration, the parameters of discharge circuit, and the current of pilot arc on the radiation yield. Based on the simulation-found relationship of internal plasma parameters (temperature distributions, fields of particle concentration and radiation, dynamics of electrical resistance of discharge channel, and plasma emission spectra) with radiation characteristics of discharge, are determined conditions to ensure the greatest radiation yield in the UV region. Β The experimental data prove the computational results. A material obtained gives practice-critical guidelines for development and correct selection of the short-wave radiation source.Π˜ΠΌΠΏΡƒΠ»ΡŒΡΠ½Ρ‹Π΅ ксСноновыС Π»Π°ΠΌΠΏΡ‹ высокого давлСния Π² ΠΊΠ²Π°Ρ€Ρ†Π΅Π²ΠΎΠΉ ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠ΅, Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰ΠΈΠ΅ Π² Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… пСриодичСского слСдования ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ², нСсмотря Π½Π° появлСниС источников Π£Π€- излучСния Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ‚ΠΈΠΏΠΎΠ² ΠΎΡΡ‚Π°ΡŽΡ‚ΡΡ ваТнСйшим ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠΌ тСхнологичСского оборудования, примСняСмого Π² Ρ„ΠΎΡ‚ΠΎΡ…ΠΈΠΌΠΈΠΈ, Ρ„ΠΎΡ‚ΠΎΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅, наноэлСктроникС, Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ Ρ‚.Π΄. Π“Π»Π°Π²Π½Ρ‹Π΅ ΠΈΡ… достоинства -Β  высокая ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ ΠΈ энСргия излучСния - нСсколько обСсцСниваСт ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ низкая ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ излучСния Π² ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ области. Π˜ΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ΡΡ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ влиянии Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ энСргии ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ³ΠΎ излучСния разрядов Π² ксСнонС Π½ΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ Π² систСматизации ΠΈ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠΈ, Ρ‚.ΠΊ. ΠΎΠ½ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π² условиях Π½Π΅ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ значСния пропускания ΠΊΠ²Π°Ρ€Ρ†Π΅Π²ΠΎΠΉ ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΈ. ΠŸΡ€ΠΎΠΏΡƒΡΠΊΠ°Π½ΠΈΠ΅ ΠΊΠ²Π°Ρ€Ρ†Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π΄Π΅Π³Ρ€Π°Π΄ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ со Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ ΠΈ, ΠΊΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ,Β  сильно ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ,Β  Π² Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ отсутствуСт, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ описаниС ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡ€Π° условий провСдСния экспСримСнта. Π’ ΠΈΡ‚ΠΎΠ³Π΅ Π°Π½Π°Π»ΠΈΠ· Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π²Π»ΠΈΡΡŽΡ‰ΠΈΡ… Π½Π°Β  ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ изучСния Π² Π£Π€- области Π·Π°Ρ‚Ρ€ΡƒΠ΄Π½Π΅Π½, ΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Π°Ρ Π·Π°Π΄Π°Ρ‡Π° ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² разрядов ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° с Ρ†Π΅Π»ΡŒΡŽ увСличСния ΠšΠŸΠ” Π² области 220-400 Π½ΠΌ. НадСТной основой для провСдСния Ρ‚Π°ΠΊΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ расчСтно- тСорСтичСскоС исслСдованиС с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽΒ  матСматичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ источника излучСния, рСалистично ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰Π΅ΠΉ процСссы Π² ΠΏΠ»Π°Π·ΠΌΠ΅ ксСнона ΠΈ ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠ΅. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅Β  ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ влияниС Π½Π°Β  Π²Ρ‹Ρ…ΠΎΠ΄ излучСния Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π° ΠΈ Π΄Π»ΠΈΠ½Ρ‹ разрядного ΠΊΠ°Π½Π°Π»Π°, давлСния наполнСния ксСнона, Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°, ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² разрядного ΠΊΠΎΠ½Ρ‚ΡƒΡ€Π°, Ρ‚ΠΎΠΊΠ° Π΄Π΅ΠΆΡƒΡ€Π½ΠΎΠΉ Π΄ΡƒΠ³ΠΈ. На основС устанавливаСмой ΠΏΡ€ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ связи Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΏΠ»Π°Π·ΠΌΡ‹ (Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… распрСдСлСний, ΠΏΠΎΠ»Π΅ΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ частиц ΠΈ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΈ, Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ элСктричСского сопротивлСния ΠΊΠ°Π½Π°Π»Π° разряда ΠΈ спСктров излучСния ΠΏΠ»Π°Π·ΠΌΡ‹) с Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ характСристиками разряда ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ условия, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ наибольший Π²Ρ‹Ρ…ΠΎΠ΄ излучСния Π² Π£Π€- области. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ вычислСний  ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Ρ‹ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» Π΄Π°Π΅Ρ‚ Π²Π°ΠΆΠ½Ρ‹Π΅ для ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠΈ ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€Ρ‹ для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ Π²Ρ‹Π±ΠΎΡ€Π° источника излучСния ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°

    Π›Π°Π·Π΅Ρ€Π½ΠΈΠΉ Ρ‚ΠΎΠΏΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΉ спСкл-Π°Π½Π°Π»Ρ–Π·Π°Ρ‚ΠΎΡ€ ΠΏΡ€ΠΎΠ»Ρ–Ρ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΡ— Ρ‚Π° Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–Π°Ρ†Ρ–ΠΉΠ½ΠΎΡ— активності Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠΌΡƒ ΠΌΠΎΡ€Ρ„ΠΎΠ³Π΅Π½Π΅Π·Ρ–.

    Full text link
    An automated system for morpho-topological determination of cell division phases and structural differentiation of tissues during morphogenesis was implemented on the basis of topological properties of cell cultures, considered within the framework of set and manifold theories. A simple robotic hardware and software system based on Zeiss microscope with a modified stage and a Velleman manipulator KSR-1 allow to control the laser module position, carrying out the angular irradiation of samples either in transmission or in darkfield or luminescent modes and the subsequent mathematical data processing. This low-budget system can be easily assembled and programmed in any cytomorphological or histomorphological laboratory. The code for data processing in MATLAB is given at the end of the paper.Π Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π° автоматизированная систСма ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΎ-топологичСского опрСдСлСния Ρ„Π°Π· дСлСния ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈ структурной Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Ρ†ΠΈΠΈ Ρ‚ΠΊΠ°Π½Π΅ΠΉ Π² Ρ…ΠΎΠ΄Π΅ ΠΌΠΎΡ€Ρ„ΠΎΠ³Π΅Π½Π΅Π·Π°, основанная Π½Π° топологичСских свойствах ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€, рассматриваСмых Π² Ρ€Π°ΠΌΠΊΠ°Ρ… Π½Π°ΠΈΠ²Π½ΠΎΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств. Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½Ρ‹ΠΉ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎ-Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π½Ρ‹ΠΉ комплСкс Π½Π° Π±Π°Π·Π΅ микроскопа Zeiss с ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π½Ρ‹ΠΌ столиком ΠΈ манипулятора Velleman ΠΌΠΎΠ΄Π΅Π»ΠΈ KSR-1 позволяСт ΡƒΠΏΡ€Π°Π²Π»ΡΡ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ модуля, осущСствляя ΡƒΠ³Π»ΠΎΠ²ΠΎΠ΅ ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΊΠ°ΠΊ Π² трансмиссионном, Ρ‚Π°ΠΊ ΠΈ Π² Ρ‚Π΅ΠΌΠ½ΠΎΠΏΠΎΠ»ΡŒΠ½ΠΎΠΌ ΠΈΠ»ΠΈ Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ…, ΠΈ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² рСгистрации. Данная Π½ΠΈΠ·ΠΊΠΎΠ±ΡŽΠ΄ΠΆΠ΅Ρ‚Π½Π°Ρ систСма ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ собрана ΠΈ Π·Π°ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΠΎΠ²Π°Π½Π° Π² условиях цитоморфологичСской ΠΈΠ»ΠΈ гистоморфологичСской Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ с использованиСм ΠΏΠΎΠ΄Ρ€ΡƒΡ‡Π½Ρ‹Ρ… срСдств. ΠŸΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹ΠΉ ΠΊΠΎΠ΄ для ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ… Π² MATLAB приводится Π² тСкстС ΡΡ‚Π°Ρ‚ΡŒΠΈ.Π Π΅Π°Π»Ρ–Π·ΠΎΠ²Π°Π½Π° Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΎΠ²Π°Π½Π° систСма ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΎ-Ρ‚ΠΎΠΏΠΎΠ»ΠΎΒ­Π³Ρ–Ρ‡Β­Π½ΠΎΒ­Π³ΠΎ визначСння Ρ„Π°Π· ΠΏΠΎΠ΄Ρ–Π»Ρƒ ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ Ρ– структурної Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–Π°Ρ†Ρ–Ρ— Ρ‚ΠΊΠ°Π½ΠΈΠ½ Ρƒ Ρ…ΠΎΠ΄Ρ– ΠΌΠΎΡ€Ρ„ΠΎΠ³Π΅Π½Π΅Π·Ρƒ, заснована Π½Π° Ρ‚ΠΎΠΏΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… властивостях ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π½ΠΈΡ… ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€, Ρ‰ΠΎ Ρ€ΠΎΠ·Π³Π»ΡΠ΄Π°ΡŽΡ‚ΡŒΡΡ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… Π½Π°Ρ—Π²Π½ΠΎΡ— Ρ‚Π΅ΠΎΡ€Ρ–Ρ— ΠΌΠ½ΠΎΠΆΠΈΠ½. Π•Π»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½ΠΈΠΉ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈΠ·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠ½ΠΎ-Π°ΠΏΠ°Ρ€Π°Ρ‚Π½ΠΈΠΉ комплСкс Π½Π° Π±Π°Π·Ρ– мікроскопа Zeiss Π· ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΈΠΌ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π½ΠΈΠΌ столиком Ρ– маніпулятора Velleman ΠΌΠΎΠ΄Π΅Π»Ρ– KSR-1 дозволяє ΠΊΠ΅Ρ€ΡƒΠ²Π°Ρ‚ΠΈ полоТСнням Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ модуля, Π·Π΄Ρ–ΠΉΡΠ½ΡŽΡŽΡ‡ΠΈ ΠΊΡƒΡ‚ΠΎΠ²Π΅ опромінСння Π·Ρ€Π°Π·ΠΊΡ–Π² як Π² трансмісійному, Ρ‚Π°ΠΊ Ρ– Π² Ρ‚Π΅ΠΌΠ½ΠΎΠΏΠΎΠ»ΡŒΠ½ΠΎΠΌΡƒ Π°Π±ΠΎ Π»ΡŽΠΌΡ–Π½Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΎΠΌΡƒ Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ…, Ρ– ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½Ρƒ ΠΎΠ±Ρ€ΠΎΠ±ΠΊΡƒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ–Π² рСєстрації. Π”Π°Π½Π° ΠΌΠ°Π»ΠΎΠ±ΡŽΠ΄ΠΆΠ΅Ρ‚Π½Π° систСма ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ Π·Ρ–Π±Ρ€Π°Π½Π° Ρ– Π·Π°ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΎΠ²Π°Π½Π° Π² ΡƒΠΌΠΎΠ²Π°Ρ… Ρ†ΠΈΡ‚ΠΎΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— Π°Π±ΠΎ гістоморфологічної Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Ρ–Ρ— Π· використанням ΠΏΡ–Π΄Ρ€ΡƒΡ‡Π½ΠΈΡ… засобів. ΠŸΡ€ΠΎΠ³Ρ€Π°ΠΌΠ½ΠΈΠΉ ΠΊΠΎΠ΄ для ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ Π΄Π°Π½ΠΈΡ… Ρƒ MATLAB Π½Π°Π²ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π² тСксті статті

    Microwave-induced self-organization in mineral systems. III. FeCl3 colloid (200 W; 2.45 GHz; 1 min)

    Full text link
    Microwave-induced self-organization of membraneous structures with different morphology in hydrolized FeCl3 colloid (200 W, 2.45 GHz,1 min). The local MW treatment conditions and the precoursor layer thickness determine the type of emerging structures
    corecore