53 research outputs found

    Deterministic Weak Localization in Periodic Structures

    Full text link
    The weak localization is found for perfect periodic structures exhibiting deterministic classical diffusion. In particular, the velocity autocorrelation function develops a universal quantum power law decay at 4 times Ehrenfest time, following the classical stretched-exponential type decay. Such deterministic weak localization is robust against weak enough randomness (e.g., quantum impurities). In the 1D and 2D cases, we argue that at the quantum limit states localized in the Bravis cell are turned into Bloch states by quantum tunnelling.Comment: 5 pages, 2 figure

    Light transport in cold atoms and thermal decoherence

    Get PDF
    By using the coherent backscattering interference effect, we investigate experimentally and theoretically how coherent transport of light inside a cold atomic vapour is affected by the residual motion of atomic scatterers. As the temperature of the atomic cloud increases, the interference contrast dramatically decreases emphazising the role of motion-induced decoherence for resonant scatterers even in the sub-Doppler regime of temperature. We derive analytical expressions for the corresponding coherence time.Comment: 4 pages - submitted to Physical Review Letter

    Supersymmetric field theory of local light diffusion in semi-infinite media

    Full text link
    A supersymmetric field theory of light diffusion in semi-infinite disordered media is presented. With the help of this technique we justify--at the perturbative level--the local light diffusion proposed by Tiggelen, Lagendijk, and Wiersma [Phys. Rev. Lett. \textbf{84}, 4333 (2000)], and show that the coherent backscattering line shape of medium bar displays a crossover from two-dimensional weak to quasi-one-dimensional strong localization.Comment: 14 pages, 1 figure. accepted for publication in Phys. Rev.

    Coherent Backscattering of Ultracold Atoms

    Full text link
    We report on the direct observation of coherent backscattering (CBS) of ultracold atoms, in a quasi-two-dimensional configuration. Launching atoms with a well-defined momentum in a laser speckle disordered potential, we follow the progressive build up of the momentum scattering pattern, consisting of a ring associated with multiple elastic scattering, and the CBS peak in the backward direction. Monitoring the depletion of the initial momentum component and the formation of the angular ring profile allows us to determine microscopic transport quantities. The time resolved evolution of the CBS peak is studied and is found a fair agreement with predictions, at long times as well as at short times. The observation of CBS can be considered a direct signature of coherence in quantum transport of particles in disordered media. It is responsible for the so called weak localization phenomenon, which is the precursor of Anderson localization.Comment: 5 pages, 4 figure

    Hanle effect in coherent backscattering

    Get PDF
    We study the shape of the coherent backscattering (CBS) cone obtained when resonant light illuminates a thick cloud of laser-cooled rubidium atoms in presence of a homogenous magnetic field. We observe new magnetic field-dependent anisotropies in the CBS signal. We show that the observed behavior is due to the modification of the atomic radiation pattern by the magnetic field (Hanle effect in the excited state).Comment: 4 pages, 3 figure

    Coherent backscattering of light by atoms in the saturated regime

    Full text link
    We present the first calculation of coherent backscattering with inelastic scattering by saturated atoms. We consider the scattering of a quasi-monochromatic laser pulse by two distant atoms in free space. By restricting ourselves to scattering of two photons, we employ a perturbative approach, valid up to second order in the incident laser intensity. The backscattering enhancement factor is found to be smaller than two (after excluding single scattering), indicating a loss of coherence between the doubly scattered light emitted by both atoms. Since the undetected photon carries information about the path of the detected photon, the coherence loss can be explained by a which-path argument, in analogy with a double-slit experiment.Comment: 16 pages, 10 figure

    Observation of coherent backscattering of light by cold atoms

    Full text link
    Coherent backscattering (CBS) of light waves by a random medium is a signature of interference effects in multiple scattering. This effect has been studied in many systems ranging from white paint to biological tissues. Recently, we have observed CBS from a sample of laser-cooled atoms, a scattering medium with interesting new properties. In this paper we discuss various effects, which have to be taken into account for a quantitative study of coherent backscattering of light by cold atoms.Comment: 25 pages LaTex2e, 17 figures, submitted to J. Opt. B: Quant. Semicl. Op

    Instabilities of waves in nonlinear disordered media

    Full text link
    We develop a self-consistent theory of temporal fluctuations of a speckle pattern resulting from the multiple scattering of a coherent wave in a weakly nonlinear disordered medium. The speckle pattern is shown to become unstable if the nonlinearity exceeds a threshold value. The instability is due to a feedback provided by the multiple scattering and manifests itself in spontaneous fluctuations of the scattered intensity. The development of instability is independent of the sign of nonlinearity.Comment: 6 pages, 2 PostScript figures, accepted to Phys. Rev. Let

    Correlations in Transmission of Light through a Disordered Amplifying Medium

    Full text link
    The angular and frequency correlation functions of the transmission coefficient for light propagation through a strongly scattering amplifying medium are considered. It is found that just as in the case of an elastic scattering medium the correlation function consists of three terms. However, the structure of the terms is rather different. Angular correlation has a power-law decay and exhibits oscillations. There is no "memory effect" as in the case of an elastic medium. Interaction between diffusion modes is strongly enhanced near the lasing threshold. Frequency correlation scale decreases close to the lasing threshold. We also consider time correlations of the transmission in the case of nonstationary inhomogeneities. We find short- and long-range time correlations. The scale of the short-range correlation decreases, while the long-range correlation scale becomes infinite near the threshold.Comment: 16 pages, 7 postscript figure

    Coherent Backscattering of light in a magnetic field

    Full text link
    This paper describes how coherent backscattering is altered by an external magnetic field. In the theory presented, magneto-optical effects occur inside Mie scatterers embedded in a non-magnetic medium. Unlike previous theories based on point-like scatterers, the decrease of coherent backscattering is obtained in leading order of the magnetic field using rigorous Mie theory. This decrease is strongly enhanced in the proximity of resonances, which cause the path length of the wave inside a scatterer to be increased. Also presented is a novel analysis of the shape of the backscattering cone in a magnetic field.Comment: 27 pages, 5 figures, Revtex, to appear in Phys. Rev.
    • …
    corecore