1,046 research outputs found

    Could we learn more about HERA high Q2Q^2 anomaly from LEP200 and TEVATRON? R-parity violation scenario

    Get PDF
    The excess of high Q2Q^2 events at HERA reported in the early 1997 by H1 and ZEUS collaborations has become the subject of extensive studies in the framework of several models related to new physics. Here we concentrate on the most promising, from our point of view, model describing HERA anomaly. We update our previous analysis and take into account new HERA statistics of the 1997 year. HERA events are considered within the R-parity broken SUSY model for a specific scenario with several non-zero couplings. R-parity broken SUSY with several non-zero couplings could explain both high Q2e++jetsQ^2 e^+ + jets and μ++jets\mu^+ + jets observed at HERA. The consequence of such a particular scenario is the excess of high Q2Q^2 di- or tri-jet events at HERA. The relation of this scenario for LEP and TEVATRON colliders is considered. This study shows that if a squark resonance does take place at HERA, supersymmetry with broken R-parity can be revealed at either LEP200 or TEVATRON in the near future.Comment: 15 pages, LaTeX file with 9 eps figure

    Minimal Supersymmetric Standard Model within CompHEP software package

    Get PDF
    The Minimal Supersymmetric Standard Model is presented as a model for the CompHEP software package as a set of files containing the complete Lagrangian of the MSSM, particle contents and parameters. All resources of CompHEP with a user-friendly interface are now available for the phenomenological study of the MSSM. Various special features of the model are discussed.Comment: 11 pages, LaTeX, submitted to Comp. Phys. Communicatio

    IS (Low Energy) SUSY STILL ALIVE?

    Full text link
    Supersymmetry, a new symmetry that relates bosons and fermions in particle physics, still escapes observation. Search for supersymmetry is one of the main aims of the Large Hadron Collider. The other possible manifestation of supersymmetry is the Dark Matter in the Universe. The present lectures contain a brief introduction to supersymmetry in particle physics. The main notions of supersymmetry are introduced. The supersymmetric extension of the Standard Model -- the Minimal Supersymmetric Standard Model -- is considered in more detail. Phenomenological features of the Minimal Supersymmetric Standard Model as well as possible experimental signatures of supersymmetry at the Large Hadron Collider are described. The present limits on supersymmetric particles are presented and the allowed region of parameter space of the MSSM is shown.Comment: 59 pages, 35 figures, PDFLatex, Lectures at the European School of High-Energy Physics, June 2012, Anjou, Franc

    Renormalization Group Improved Radiative Corrections to the Supersymmetric Higgs Boson Masses

    Get PDF
    The one-loop radiative corrections to the Higgs boson potential in the MSSM, originating from the top quark and squark loops, are summed in the leading log approximation using the renormalization group. The RG improved effective potential is minimized and the corrections to the CP-odd and CP-even Higgs boson masses are calculated. The resulting masses exhibit smoother top mass dependence than those calculated without RG summation. We have also found that for preferable values of the top mass the light Higgs mass does not exceed 100 GeV.Comment: 10 PAGES, 1 FIGURE ENCLOSED, LATE

    Long-lived Charginos in the Focus-point Region of the MSSM Parameter Space

    Full text link
    We analyse the possibility to get light long-lived charginos within the framework of the MSSM with gravity mediated SUSY breaking. We find out that this possibility can be realized in the so-called focus-point region of parameter space. The mass degeneracy of higgsino-like chargino and two higgsino-like neutralinos is the necessary condition for a long lifetime. It requires the fine-tuning of parameters, but being a single additional constraint in the whole parameter space it can be fulfilled in the Constrained MSSM along the border line where radiative electroweak symmetry breaking fails. In a narrow band close to the border line the charginos are long-lived particles. The cross-sections of their production and co-production at the LHC via electroweak interaction reach a few tenth of pb.Comment: LaTeX, 11 pages, 11 eps figure
    corecore