1,018 research outputs found

    Current Status and Application of Proton Therapy for Esophageal Cancer

    Get PDF
    Esophageal cancer remains one of the leading causes of death from cancer across the world despite advances in multimodality therapy. Although early-stage disease can often be treated surgically, the current state of the art for locally advanced disease is concurrent chemoradiation, followed by surgery whenever possible. The uniform midline tumor location puts a strong importance on the need for precise delivery of radiation that would minimize dose to the heart and lungs, and the biophysical properties of proton beam makes this modality potential ideal for esophageal cancer treatment. This review covers the current state of knowledge of proton therapy for esophageal cancer, focusing on published retrospective single- and multi-institutional clinical studies, and emerging data from prospective clinical trials, that support the benefit of protons vs photon-based radiation in reducing postoperative complications, cardiac toxicity, and severe radiation induced immune suppression, which may improve survival outcomes for patients. In addition, we discuss the incorporation of immunotherapy to the curative management of esophageal cancers in the not-too-distant future. However, there is still a lack of high-level evidence to support proton therapy in the treatment of esophageal cancer, and proton therapy has its limitations in clinical application. It is expected to see the results of future large-scale randomized clinical trials and the continuous improvement of proton radiotherapy technology

    Re-Irradiation in Patients with Recurrent Rectal Cancer is Safe and Feasible

    Get PDF
    BACKGROUND: There is no consensus yet for the best treatment regimen in patients with recurrent rectal cancer (RRC). This study aims to evaluate toxicity and oncological outcomes after re-irradiation in patients with RRC in our center. Clinical (cCR) and pathological complete response (pCR) rates and radicality were also studied. METHODS: Between January 2010 and December 2018, 61 locally advanced RRC patients were treated and analyzed retrospectively. Patients received radiotherapy at a dose of 30.0-30.6 Gy (reCRT) or 50.0-50.4 Gy chemoradiotherapy (CRT) in cases of no prior irradiation because of low-risk primary rectal cancer. In both groups, patients received capecitabine concomitantly. RESULTS: In total, 60 patients received the prescribed neoadjuvant (chemo)radiotherapy followed by surgery, 35 patients (58.3%) in the reRCT group and 25 patients (41.7%) in the long-course CRT group. There were no significant differences in overall survival (p = 0.82), disease-free survival (p = 0.63), and local recurrence-free survival (p = 0.17) between the groups. Patients in the long-course CRT group reported more skin toxicity after radiotherapy (p = 0.040). No differences were observed in late toxicity. In the long-course CRT group, a significantly higher cCR rate was observed (p = 0.029); however, there was no difference in the pCR rate (p = 0.66). CONCLUSIONS: The treatment of RRC patients with re-irradiation is comparable to treatment with long-course CRT regarding toxicity and oncological outcomes. In the reCRT group, less cCR was observed, although there was no difference in pCR. The findings in this study suggest that it is safe and feasible to re-irradiate RRC patients

    Diaphragm-Based Position Verification to Improve Daily Target Dose Coverage in Proton and Photon Radiation Therapy Treatment of Distal Esophageal Cancer

    Get PDF
    Purpose: In modern conformal radiation therapy of distal esophageal cancer, target coverage can be affected by variations in the diaphragm position. We investigated if daily position verification (PV) extended by a diaphragm position correction would optimize target dose coverage for esophageal cancer treatment. Methods and Materials: For 15 esophageal cancer patients, intensity modulated proton therapy (IMPT) and volumetric modulated arc therapy (VMAT) plans were computed. Displacements of the target volume were correlated with diaphragm displacements using repeated 4-dimensional computed tomography images to determine the correction needed to account for diaphragm variations. Afterwards, target coverage was evaluated for 3 PV approaches based on: (1) bony anatomy (PV_B), (2) bony anatomy corrected for the diaphragm position (PV_BD) and (3) target volume (PV_T). Results: The cranial-caudal mean target displacement was congruent with almost half of the diaphragm displacement (y = 0.459x), which was used for the diaphragm correction in PV_BD. Target dose coverage using PV_B was adequate for most patients with diaphragm displacements up till 10 mm (>= 94% of the dose in 98% of the volume [D-98%]). For larger displacements, the target coverage was better maintained by PV_T and PV_BD. Overall, PV_BD accounted best for target displacements, especially in combination with tissue density variations (D-98%: IMPT 94% +/- 5%, VMAT 96% +/- 5%). Diaphragm displacements of more than 10 mm were observed in 22% of the cases. Conclusions: PV_B was sufficient to achieve adequate target dose coverage in case of small deviations in diaphragm position. However, large deviations of the diaphragm were best mitigated by PV_BD. To detect the cases where target dose coverage could be compromised due to diaphragm position variations, we recommend monitoring of the diaphragm position before treatment through online imaging. (C) 2021 Elsevier Inc. All rights reserved

    Evaluation of continuous beam rescanning versus pulsed beam in pencil beam scanned proton therapy for lung tumours

    Get PDF
    The treatment of moving targets with pencil beam scanned proton therapy (PBS-PT) may rely on rescanning strategies to smooth out motion induced dosimetric disturbances. PBS-PT machines, such as Proteus (R) Plus (PPlus) and Proteus (R) One (POne), deliver a continuous or a pulsed beam, respectively. In PPlus, scaled (or no) rescanning can be applied, while POne implies intrinsic 'rescanning' due to its pulsed delivery. We investigated the efficacy of these PBS-PT delivery types for the treatment of lung tumours. In general, clinically acceptable plans were achieved, and PPlus and POne showed similar effectiveness

    Can we safely reduce the radiation dose to the heart while compromising the dose to the lungs in oesophageal cancer patients?

    Get PDF
    PURPOSE: The aim of this study was to evaluate which clinical and treatment-related factors are associated with heart and lung toxicity in oesophageal cancer patients treated with chemoradiation (CRT). The secondary objective was to analyse whether these toxicities are associated with overall survival (OS) MATERIALS AND METHODS: The study population consisted of a retrospective cohort of 216 oesophageal cancer patients treated with curative CRT. Clinical and treatment related factors were analysed for OS and new pulmonary and cardiac events by multivariable regression analyses. The effect of these toxicities on OS was assessed by Kaplan Meyer analyses. RESULTS: Multivariable analysis revealed that pulmonary toxicity was best predicted by the mean lung dose. Cardiac complications were diverse; the most frequently occurring complication was pericardial effusion. Several cardiac dose parameters correlated with this endpoint. Patients developing radiation pneumonitis had significantly worse OS than patients without radiation pneumonitis, while no difference was observed in OS between patients with and without pericardial effusion. OS was best predicted by the V45 of the lung and tumour stage. None of the cardiac dose parameters predicted OS in multivariable analyses. CONCLUSION: Cardiac dose volume parameters predicted the risk of pericardial effusion and pulmonary dose volume parameters predicted the risk of radiation pneumonitis. However, in this patient cohort, pulmonary DVH parameters (V45) were more important for OS than cardiac DVH parameters. These results suggest that reducing the cardiac dose at the expense of the dose to the lungs might not always be a good strategy in oesophageal cancer patients

    Assessment of a diaphragm override strategy for robustly optimized proton therapy planning for esophageal cancer patients

    Get PDF
    PURPOSE: To ensure target coverage in the treatment of esophageal cancer, a density override to the region of diaphragm motion can be applied in the optimization process. Here, we evaluate the benefit of this approach during robust optimization for intensity modulated proton therapy (IMPT) planning. MATERIALS AND METHODS: For ten esophageal cancer patients, two robustly optimized IMPT plans were created either using (WDO) or not using (NDO) a diaphragm density override of 1.05 g/cm3 during plan optimization. The override was applied to the excursion of the diaphragm between exhale and inhale. Initial robustness evaluation was performed for plan acceptance (setup errors of 8 mm, range errors of ±3%), and subsequently, on all weekly repeated 4DCTs (setup errors of 2 mm, range errors of ±3%). Target coverage and hotspots were analyzed on the resulting voxel-wise minimum (Vwmin ) and voxel-wise maximum (Vwmax ) dose distributions. RESULTS: The nominal dose distributions were similar for both WDO and NDO plans. However, visual inspection of the Vwmax of the WDO plans showed hotspots behind the right diaphragm override region. For one patient, target coverage and hotspots improved by applying the diaphragm override. We found no differences in target coverage in the weekly evaluations between the two approaches. CONCLUSION: The diaphragm override approach did not result in a clinical benefit in terms of planning and interfractional robustness. Therefore, we don't see added value in employing this approach as a default option during robust optimization for IMPT planning in esophageal cancer

    Radiation-Induced Myocardial Fibrosis in Long-Term Esophageal Cancer Survivors

    Get PDF
    Purpose: Radiation-induced cardiac toxicity is a potential lethal complication. The aim of this study was to assess whether there is a dose-dependent relationship between radiation dose and myocardial fibrosis in patients who received neoadjuvant chemoradiation (nCRT) for esophageal cancer (EC). Methods and Materials: Forty patients with EC treated with a transthoracic esophagectomy with (n = 20) or without (n = 20) nCRT (CROSS study regimen) were included. Cardiovascular magnetic resonance imaging (1.5 Tesla) for left ventricular (LV) function, late gadolinium enhancement, and T1 mapping were performed. Extracellular volume (ECV), as a surrogate for collagen burden, was measured for all LV segments separately. The dose-response relationship between ECV and mean radiation dose per LV myocardial segment was evaluated using a mixed-model analysis. Results: Seventeen nCRT and 16 control patients were suitable for analysis. The mean time after treatment was 67.6 +/- 8.1 (nCRT) and 122 +/- 35 (controls) months (P = .02). In nCRT patients, we found a significantly higher mean global ECV of 28.2% compared with 24.0% in the controls (P < .001). After nCRT, LV myocardial segments with elevated ECV had received significantly higher radiation doses. In addition, a linear dose-effect relation was found with a 0.136% point increase of ECV for each Gy (P < .001). There were no differences in LV function measures and late gadolinium enhancement between both groups. Conclusions: Myocardial ECV was significantly higher in long-term EC survivors after nCRT compared with surgery only. Moreover, this ECV increase was linear with the radiation dose per LV segment, indicating radiation-induced myocardial fibrosis. (C) 2021 The Author(s). Published by Elsevier Inc

    Late cardiac toxicity of neo-adjuvant chemoradiation in esophageal cancer survivors:A prospective cross-sectional pilot study

    Get PDF
    Purpose: Although cure rates in esophageal cancer (EC) have improved since the introduction of neoadjuvant chemoradiation (nCRT), evidence for treatment-related cardiac toxicity is growing, of which the exact mechanisms remain unknown. The primary objective of this study was to identify (subclinical) cardiac dysfunction in EC patients after nCRT followed by surgical resection as compared to surgery alone. Materials and Methods: EC survivors followed for 5-15 years after curative resection with (n = 20) or without (n = 20) nCRT were enrolled in this prospective cross-sectional pilot study. All patients underwent several clinical and diagnostic tests in order to objectify (sub)clinical cardiac toxicity including cardiac CT and MRI, echocardiography, ECG, 6-minutes walking test, physical examination and EORTC questionnaires. Results: We found an increased rate of myocardial fibrosis (Linear late gadolinium enhancement (LGE) 4 vs. 1; p = 0.13; mean extracellular volume (ECV) 28.4 vs. 24.0; p < 0.01), atrial fibrillation (AF) (6 vs. 2; p = 0.07) and conduction changes in ECG among patients treated with nCRT as compared to those treated with surgery alone. The results suggested an impact on quality of life in terms of worse role functioning for this patient group (95.0 vs. 88.8; p = 0.03). Conclusion: Based on our analyses we hypothesize that in EC patients, radiation-induced myocardial fibrosis plays a central role in cardiac toxicity leading to AF, conduction changes and ultimately to decreased role functioning. The results emphasize the need to verify these findings in larger cohorts of patients. (C) 2021 The Author(s). Published by Elsevier B.V

    Clinical selection strategy for and evaluation of intra-operative brachytherapy in patients with locally advanced and recurrent rectal cancer

    Get PDF
    Background and purpose: A radical resection of locally advanced rectal cancer (LARC) or recurrent rectal cancer (RRC) can be challenging. In case of increased risk of an R1 resection, intra-operative brachytherapy (IOBT) can be applied. We evaluated the clinical selection strategy for IOBT. Materials and methods: Between February 2007 and May 2018, 132 LARC/RRC patients who were scheduled for surgery with IOBT standby, were evaluated. By intra-operative inspection of the resection margin and MR imaging, it was determined whether a resection was presumed to be radical. Frozen sections were taken on indication. In case of a suspected R1 resection, IOBT (1 x 10 Gy) was applied. Histopathologic evaluation, treatment and toxicity data were collected from medical records. Results: Tumour was resected in 122 patients. IOBT was given in 42 patients of whom 54.8% (n = 23) had a histopathologically proven R1 resection. Of the 76 IOBT-omitted R0 resected patients, 17.1% (n = 13) had a histopathologically proven R1 resection. In 4 IOBT-omitted patients, a clinical R1/2 resection was seen. In total, correct clinical judgement occurred in 72.6% (n = 88) of patients. In LARC, 58.3% (n = 14) of patients were overtreated (R0, with IOBT) and 10.9% (n = 5) were undertreated (R1, without IOBT). In RRC, 26.5% (n = 9) of patients were undertreated. Conclusion: In total, correct clinical judgement occurred in 72.6% (n = 88). However, in 26.5% (n = 9) RRC patients, IOBT was unjustifiedly omitted. IOBT is accompanied by comparable and acceptable toxicity. Therefore, we recommend IOBT to all RRC patients at risk of an R1 resection as their salvage treatment. (c) 2021 The Author(s). Published by Elsevier B.V. Radiotherapy and Oncology 159 (2021) 91 & ndash;97 This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
    • 

    corecore