108 research outputs found

    Forward positioning and consolidation of strategic inventories

    Get PDF
    The forward positioning of strategic inventory in the supply chain has an impact on transportation times and is important for sensitive demand profiles. Consolidation of stocks creates pooling effects and minimizes costs. This study analyzes a current military case where forward consolidation of equipment is considered using optimization, and payback periods are calculated for the cost of consolidating inventory at one of six locations. Results indicate that forward positioning and consolidation reduces time and cost, and also creates savings in reverse logistics flows. The study has implications for geographically diverse supply chains such as humanitarian aid and emergency response operations

    Analytical techniques and the Air Force logistics readiness officer

    Get PDF
    The accelerated globalization of logistics activities over the last several decades has spurred a rapid expansion of port facilities all cross the world. However, the recent slowdown of international trade, coupled with a global financial crisis, has created an on-going glut of international port facilities throughout the world. Although the abundance of port facilities provides more transshipment options for carriers and shippers, it makes the port selection decision more complex and difficult. To cope with this new set of challenges, this paper proposes a hybrid data envelopment analysis (DEA)/ analytic hierarchy process (AHP) model that is designed to identify factors specifically influencing transshipment port selection, evaluates the extent of influence of those factors on a transshipment port selection decision, and then determines the most critical ones among various factors. To illustrate the usefulness of the proposed hybrid DEA/AHP model, major container hub ports in Far-East Asia were analyzed

    When an old star smolders: On the detection of hydrocarbon emission from S-type AGB stars

    Full text link
    Polycyclic aromatic hydrocarbons (PAHs) produce characteristic infrared emission bands that have been observed in a wide range of astrophysical environments, where carbonaceous material is subjected to ultraviolet (UV) radiation. Although PAHs are expected to form in carbon-rich AGB stars, they have up to now only been observed in binary systems where a hot companion provides a hard radiation field. In this letter, we present low-resolution infrared spectra of four S-type AGB stars, selected from a sample of 90 S-type AGB stars observed with the infrared spectrograph aboard the Spitzer satellite. The spectra of these four stars show the typical infrared features of PAH molecules. We confirm the correlation between the temperature of the central star and the centroid wavelength of the 7.9 {\mu}m feature, present in a wide variety of stars spanning a temperature range from 3 000 to 12 000 K. Three of four sources presented in this paper extend this relation towards lower temperatures. We argue that the mixture of hydrocarbons we see in these S-stars has a rich aliphatic component. The fourth star, BZ CMa, deviates from this correlation. Based on the similarity with the evolved binary TU Tau, we predict that BZ CMa has a hot companion as well.Comment: 5 pages, 2 figures, 2 table

    Evidence for the naphthalene cation in a region of the interstellar medium with anomalous microwave emission

    Get PDF
    We report high resolution spectroscopy of the moderately reddened (AV_V=3) early type star Cernis 52 located in a region of the Perseus molecular cloud complex with anomalous microwave emission. In addition to the presence of the most common diffuse interstellar bands (DIBs) we detect two new interstellar or circumstellar bands coincident to within 0.01% in wavelength with the two strongest bands of the naphthalene cation (C10_{10}H8+_{8}^+) as measured in gas-phase laboratory spectroscopy at low temperatures and find marginal evidence for the third strongest band. Assuming these features are caused by the naphthalene cation, from the measured intensity and available oscillator strengths we find that 0.008 % of the carbon in the cloud could be in the form of this molecule. We expect hydrogen additions to cause hydronaphthalene cations to be abundant in the cloud and to contribute via electric dipole radiation to the anomalous microwave emission. The identification of new interstellar features consistent with transitions of the simplest polycyclic aromatic hydrocarbon adds support to the hypothesis that this type of molecules are the carriers of both diffuse interstellar bands and anomalous microwave emission.Comment: Accepted for publication in The Astrophysical Journa

    The 5.25 & 5.7 μ\mum Astronomical Polycyclic Aromatic Hydrocarbon Emission Features

    Full text link
    Astronomical mid-IR spectra show two minor PAH features at 5.25 and 5.7 μ\mum (1905 and 1754 cm1^{\rm - 1}) that hitherto have been little studied, but contain information about the astronomical PAH population that complements that of the major emission bands. Here we report a study involving both laboratory and theoretical analysis of the fundamentals of PAH spectroscopy that produce features in this region and use these to analyze the astronomical spectra. The ISO SWS spectra of fifteen objects showing these PAH features were considered for this study, of which four have sufficient S/N between 5 and 6 μ\mum to allow for an in-depth analysis. All four astronomical spectra show similar peak positions and profiles. The 5.25 μ\mum feature is peaked and asymmetric, while the 5.7 μ\mum feature is broader and flatter. Detailed analysis of the laboratory spectra and quantum chemical calculations show that the astronomical 5.25 and 5.7 μ\mum bands are a blend of combination, difference and overtone bands primarily involving CH stretching and CH in-plane and CH out-of-plane bending fundamental vibrations. The experimental and computational spectra show that, of all the hydrogen adjacency classes possible on PAHs, solo and duo hydrogens consistently produce prominent bands at the observed positions whereas quartet hydrogens do not. In all, this a study supports the picture that astronomical PAHs are large with compact, regular structures. From the coupling with primarily strong CH out-of-plane bending modes one might surmise that the 5.25 and 5.7 μ\mum bands track the neutral PAH population. However, theory suggests the role of charge in these astronomical bands might also be important.Comment: Accepted ApJ, 40 pages in pre-print, 14 figures, two onlin

    Lack of PAH emission toward low-mass embedded young stellar objects

    Get PDF
    PAHs have been detected toward molecular clouds and some young stars with disks, but have not yet been associated with embedded young stars. We present a sensitive mid-IR spectroscopic survey of PAH features toward a sample of low-mass embedded YSOs. The aim is to put constraints on the PAH abundance in the embedded phase of star formation using radiative transfer modeling. VLT-ISAAC L-band spectra for 39 sources and Spitzer IRS spectra for 53 sources are presented. Line intensities are compared to recent surveys of Herbig Ae/Be and T Tauri stars. The radiative transfer codes RADMC and RADICAL are used to model the PAH emission from embedded YSOs consisting of a PMS star with a circumstellar disk embedded in an envelope. The dependence of the PAH feature on PAH abundance, stellar radiation field, inclination and the extinction by the surrounding envelope is studied. The 3.3 micron PAH feature is undetected for the majority of the sample (97%), with typical upper limits of 5E-16 W/m^2. Compact 11.2 micron PAH emission is seen directly towards 1 out of the 53 Spitzer Short-High spectra, for a source that is borderline embedded. For all 12 sources with both VLT and Spitzer spectra, no PAH features are detected in either. In total, PAH features are detected toward at most 1 out of 63 (candidate) embedded protostars (<~ 2%), even lower than observed for class II T Tauri stars with disks (11-14%). Assuming typical class I stellar and envelope parameters, the absence of PAHs emission is most likely explained by the absence of emitting carriers through a PAH abundance at least an order of magnitude lower than in molecular clouds but similar to that found in disks. Thus, most PAHs likely enter the protoplanetary disks frozen out in icy layers on dust grains and/or in coagulated form.Comment: 13 pages, 9 figures, accepted for publication in A&

    Morganella morganii septicemia and concurrent renal crassicaudiasis in a Cuvier’s beaked whale (Ziphius cavirostris) stranded in Italy

    Get PDF
    Information regarding bacterial diseases in Cuvier's beaked whale (CBW, Ziphius cavirostris) is scattered and mostly incomplete. This report describes a case of septicemia by Morganella morganii in a juvenile male CBW with concurrent renal crassicaudiasis. The animal stranded along the Ligurian coastline (Italy) and underwent a systematic post-mortem examination to determine the cause of death. Histopathology showed lesions consistent with a septicemic infection, severe meningoencephalitis, and renal crassicaudiasis. An M. morganii alpha-hemolytic strain was isolated in pure culture from liver, lung, prescapular lymph node, spleen, hepatic and renal abscesses, and central nervous system (CNS). The antimicrobial susceptibility profile of the strain was evaluated with the minimum inhibitory concentrations (MICs) method and reduced susceptibility to Trimethoprim-Sulfamethoxazole is reported. Crassicauda sp. nematodes were retrieved from both kidneys. No other pathogens were detected by immunohistochemistry, serology, or biomolecular analyses. Toxicological investigations detected high concentrations of immunosuppressant pollutants in the blubber. The chronic parasitic infestation and the toxic effects of xenobiotics likely compromised the animal's health, predisposing it to an opportunistic bacterial infection. To our knowledge, this is the first description of M. morganii septicemia with CNS involvement in a wild cetacean
    corecore