108 research outputs found
Forward positioning and consolidation of strategic inventories
The forward positioning of strategic inventory in the supply chain has an impact on transportation times and is important for sensitive demand profiles. Consolidation of stocks creates pooling effects and minimizes costs. This study analyzes a current military case where forward consolidation of equipment is considered using optimization, and payback periods are calculated for the cost of consolidating inventory at one of six locations. Results indicate that forward positioning and consolidation reduces time and cost, and also creates savings in reverse logistics flows. The study has implications for geographically diverse supply chains such as humanitarian aid and emergency response operations
Analytical techniques and the Air Force logistics readiness officer
The accelerated globalization of logistics activities over the last several decades has spurred a rapid expansion of port facilities all cross the world. However, the recent slowdown of international trade, coupled with a global financial crisis, has created an on-going glut of international port facilities throughout the world. Although the abundance of port facilities provides more transshipment options for carriers and shippers, it makes the port selection decision more complex and difficult. To cope with this new set of challenges, this paper proposes a hybrid data envelopment analysis (DEA)/ analytic hierarchy process (AHP) model that is designed to identify factors specifically influencing transshipment port selection, evaluates the extent of influence of those factors on a transshipment port selection decision, and then determines the most critical ones among various factors. To illustrate the usefulness of the proposed hybrid DEA/AHP model, major container hub ports in Far-East Asia were analyzed
When an old star smolders: On the detection of hydrocarbon emission from S-type AGB stars
Polycyclic aromatic hydrocarbons (PAHs) produce characteristic infrared
emission bands that have been observed in a wide range of astrophysical
environments, where carbonaceous material is subjected to ultraviolet (UV)
radiation. Although PAHs are expected to form in carbon-rich AGB stars, they
have up to now only been observed in binary systems where a hot companion
provides a hard radiation field. In this letter, we present low-resolution
infrared spectra of four S-type AGB stars, selected from a sample of 90 S-type
AGB stars observed with the infrared spectrograph aboard the Spitzer satellite.
The spectra of these four stars show the typical infrared features of PAH
molecules. We confirm the correlation between the temperature of the central
star and the centroid wavelength of the 7.9 {\mu}m feature, present in a wide
variety of stars spanning a temperature range from 3 000 to 12 000 K. Three of
four sources presented in this paper extend this relation towards lower
temperatures. We argue that the mixture of hydrocarbons we see in these S-stars
has a rich aliphatic component. The fourth star, BZ CMa, deviates from this
correlation. Based on the similarity with the evolved binary TU Tau, we predict
that BZ CMa has a hot companion as well.Comment: 5 pages, 2 figures, 2 table
Recommended from our members
Infrared Spectroscopy and Photochemistry of Anthracoronene in Cosmic Water Ice
We present a laboratory study of the polycyclic aromatic hydrocarbon (PAH) anthracoronene (AntCor, C36H18) in simulated interstellar ices in order to determine its possible contribution to the broad infrared absorption bands in the 5–8 μm wavelength interval. The Fourier transform infrared (FTIR) spectrum of AntCor, codeposited with water ice, was collected. The FTIR spectrum of the sample irradiated with ultraviolet photons was also collected. Unirradiated and UV-irradiated AntCor embedded in water ice have not been studied before; therefore, the molecule’s band positions and intensities were compared to published data on AntCor in an argon matrix and theoretical calculations (DFT), as well as the published results of its parent molecules, coronene and anthracene, in water ice. The experimental band strengths for unirradiated AntCor exhibit variability as a function of PAH:H2O concentration, with two distinct groupings of band intensities. AntCor clustering occurs for all concentrations and has a significant effect on PAH degradation rates and photoproduct variability. Near-IR spectra of irradiated AntCor samples show that AntCor+ production increases as the concentration of AntCor in water ice decreases. Photoproduct bands are assigned to AntCor+, cationic alcohols, protonated AntCor, and ketones. We report the rate constants of the photoproduct production for the 1:1280 AntCor:H2O concentration. CO2 production from AntCor is much less than what was previously reported for Ant and Cor and exhibits two distinct regimes as a function of AntCor:H2O concentration. The contribution of AntCor photoproducts to astronomical spectra can be estimated by comparison with the observed intensities in the 7.4–8.0 μm range
Evidence for the naphthalene cation in a region of the interstellar medium with anomalous microwave emission
We report high resolution spectroscopy of the moderately reddened (A=3)
early type star Cernis 52 located in a region of the Perseus molecular cloud
complex with anomalous microwave emission. In addition to the presence of the
most common diffuse interstellar bands (DIBs) we detect two new interstellar or
circumstellar bands coincident to within 0.01% in wavelength with the two
strongest bands of the naphthalene cation (CH) as measured in
gas-phase laboratory spectroscopy at low temperatures and find marginal
evidence for the third strongest band.
Assuming these features are caused by the naphthalene cation, from the
measured intensity and available oscillator strengths we find that 0.008 % of
the carbon in the cloud could be in the form of this molecule. We expect
hydrogen additions to cause hydronaphthalene cations to be abundant in the
cloud and to contribute via electric dipole radiation to the anomalous
microwave emission. The identification of new interstellar features consistent
with transitions of the simplest polycyclic aromatic hydrocarbon adds support
to the hypothesis that this type of molecules are the carriers of both diffuse
interstellar bands and anomalous microwave emission.Comment: Accepted for publication in The Astrophysical Journa
The 5.25 & 5.7 m Astronomical Polycyclic Aromatic Hydrocarbon Emission Features
Astronomical mid-IR spectra show two minor PAH features at 5.25 and 5.7
m (1905 and 1754 cm) that hitherto have been little studied,
but contain information about the astronomical PAH population that complements
that of the major emission bands. Here we report a study involving both
laboratory and theoretical analysis of the fundamentals of PAH spectroscopy
that produce features in this region and use these to analyze the astronomical
spectra. The ISO SWS spectra of fifteen objects showing these PAH features were
considered for this study, of which four have sufficient S/N between 5 and 6
m to allow for an in-depth analysis. All four astronomical spectra show
similar peak positions and profiles. The 5.25 m feature is peaked and
asymmetric, while the 5.7 m feature is broader and flatter. Detailed
analysis of the laboratory spectra and quantum chemical calculations show that
the astronomical 5.25 and 5.7 m bands are a blend of combination,
difference and overtone bands primarily involving CH stretching and CH in-plane
and CH out-of-plane bending fundamental vibrations. The experimental and
computational spectra show that, of all the hydrogen adjacency classes possible
on PAHs, solo and duo hydrogens consistently produce prominent bands at the
observed positions whereas quartet hydrogens do not. In all, this a study
supports the picture that astronomical PAHs are large with compact, regular
structures. From the coupling with primarily strong CH out-of-plane bending
modes one might surmise that the 5.25 and 5.7 m bands track the neutral
PAH population. However, theory suggests the role of charge in these
astronomical bands might also be important.Comment: Accepted ApJ, 40 pages in pre-print, 14 figures, two onlin
Lack of PAH emission toward low-mass embedded young stellar objects
PAHs have been detected toward molecular clouds and some young stars with
disks, but have not yet been associated with embedded young stars. We present a
sensitive mid-IR spectroscopic survey of PAH features toward a sample of
low-mass embedded YSOs. The aim is to put constraints on the PAH abundance in
the embedded phase of star formation using radiative transfer modeling.
VLT-ISAAC L-band spectra for 39 sources and Spitzer IRS spectra for 53
sources are presented. Line intensities are compared to recent surveys of
Herbig Ae/Be and T Tauri stars. The radiative transfer codes RADMC and RADICAL
are used to model the PAH emission from embedded YSOs consisting of a PMS star
with a circumstellar disk embedded in an envelope. The dependence of the PAH
feature on PAH abundance, stellar radiation field, inclination and the
extinction by the surrounding envelope is studied.
The 3.3 micron PAH feature is undetected for the majority of the sample
(97%), with typical upper limits of 5E-16 W/m^2. Compact 11.2 micron PAH
emission is seen directly towards 1 out of the 53 Spitzer Short-High spectra,
for a source that is borderline embedded. For all 12 sources with both VLT and
Spitzer spectra, no PAH features are detected in either. In total, PAH features
are detected toward at most 1 out of 63 (candidate) embedded protostars (<~
2%), even lower than observed for class II T Tauri stars with disks (11-14%).
Assuming typical class I stellar and envelope parameters, the absence of PAHs
emission is most likely explained by the absence of emitting carriers through a
PAH abundance at least an order of magnitude lower than in molecular clouds but
similar to that found in disks. Thus, most PAHs likely enter the protoplanetary
disks frozen out in icy layers on dust grains and/or in coagulated form.Comment: 13 pages, 9 figures, accepted for publication in A&
Morganella morganii septicemia and concurrent renal crassicaudiasis in a Cuvier’s beaked whale (Ziphius cavirostris) stranded in Italy
Information regarding bacterial diseases in Cuvier's beaked whale (CBW, Ziphius cavirostris) is scattered and mostly incomplete. This report describes a case of septicemia by Morganella morganii in a juvenile male CBW with concurrent renal crassicaudiasis. The animal stranded along the Ligurian coastline (Italy) and underwent a systematic post-mortem examination to determine the cause of death. Histopathology showed lesions consistent with a septicemic infection, severe meningoencephalitis, and renal crassicaudiasis. An M. morganii alpha-hemolytic strain was isolated in pure culture from liver, lung, prescapular lymph node, spleen, hepatic and renal abscesses, and central nervous system (CNS). The antimicrobial susceptibility profile of the strain was evaluated with the minimum inhibitory concentrations (MICs) method and reduced susceptibility to Trimethoprim-Sulfamethoxazole is reported. Crassicauda sp. nematodes were retrieved from both kidneys. No other pathogens were detected by immunohistochemistry, serology, or biomolecular analyses. Toxicological investigations detected high concentrations of immunosuppressant pollutants in the blubber. The chronic parasitic infestation and the toxic effects of xenobiotics likely compromised the animal's health, predisposing it to an opportunistic bacterial infection. To our knowledge, this is the first description of M. morganii septicemia with CNS involvement in a wild cetacean
- …