569 research outputs found

    Longitudinal Momentum Fraction X_L for Two High P_t Protons in pp->ppX Reaction

    Full text link
    We present an analysis of new data from Experiment E850 at BNL. We have characterized the inclusive cross section near the endpoint for pp exclusive scattering in Hydrogen and in Carbon with incident beam energy of 6 GeV. We select events with a pair of back-to-back hadrons at large transverse momentum. These cross sections are parameterized with a form dσdXL\frac{d \sigma}{d X_{L}} (1XL)p\sim(1-X_{L})^{p}, where XL{X_{L}} is the ratio of the longitudinal momentum of the observed pair to the total incident beam momentum. Small value of pp may suggest that the number of partons participating in the reaction is large and reaction has a strong dependence on the center-of-mass energy. We also discuss nuclear effects observed in our kinematic region.Comment: 4 pages, 2 figures, to be published in Proceedings of CIPANP2000, Quebec, May 22-28, 2000, requires aipproc.sty(included

    Energy Dependence of Nuclear Transparency in C(p,2p) Scattering

    Get PDF
    The transparency of carbon for (p,2p) quasi-elastic events was measured at beam energies ranging from 6 to 14.5 GeV at 90 degrees c.m. The four momentum transfer squared q*q ranged from 4.8 to 16.9 (GeV/c)**2. We present the observed energy dependence of the ratio of the carbon to hydrogen cross sections. We also apply a model for the nuclear momentum distribution of carbon to normalize this transparency ratio. We find a sharp rise in transparency as the beam energy is increased to 9 GeV and a reduction to approximately the Glauber level at higher energies.Comment: 4 pages, 2figures, submitted to PR

    Beam-Target Double-Spin Asymmetry in Quasielastic Electron Scattering off the Deuteron with CLAS

    Get PDF
    Background: The deuteron plays a pivotal role in nuclear and hadronic physics, as both the simplest bound multinucleon system and as an effective neutron target. Quasielastic electron scattering on the deuteron is a benchmark reaction to test our understanding of deuteron structure and the properties and interactions of the two nucleons bound in the deuteron. Purpose: The experimental data presented here can be used to test state-of-the-art models of the deuteron and the two-nucleon interaction in the final state after two-body breakup of the deuteron. Focusing on polarization degrees of freedom, we gain information on spin-momentum correlations in the deuteron ground state (due to the D-state admixture) and on the limits of the impulse approximation (IA) picture as it applies to measurements of spin-dependent observables like spin structure functions for bound nucleons. Information on this reaction can also be used to reduce systematic uncertainties on the determination of neutron form factors or deuteron polarization through quasielastic polarized electron scattering. Method: We measured the beam-target double-spin asymmetry (A||) for quasielastic electron scattering off the deuteron at several beam energies (1.6-1.7, 2.5, 4.2, and 5.6-5.8 GeV), using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The deuterons were polarized along (or opposite to) the beam direction. The double-spin asymmetries were measured as a function of photon virtuality Q2 (0.13-3.17 (GeV/c)2), missing momentum (pm = 0.0-0.5 GeV/c), and the angle between the (inferred) spectator neutron and the momentum transfer direction (θnq). Results: The results are compared with a recent model that includes final-state interactions (FSI) using a complete parametrization of nucleon-nucleon scattering, as well as a simplified model using the plane wave impulse approximation (PWIA). We find overall good agreement with both the PWIA and FSI expectations at low to medium missing momenta (pm \u3c= 0.25 GeV/c), including the change of the asymmetry due to the contribution of the deuteron D state at higher momenta. At the highest missing momenta, our data clearly agree better with the calculations including FSI. Conclusions: Final-state interactions seem to play a lesser role for polarization observables in deuteron two-body electrodisintegration than for absolute cross sections. Our data, while limited in statistical power, indicate that PWIA models work reasonably well to understand the asymmetries at lower missing momenta. In turn, this information can be used to extract the product of beam and target polarization (PbPt) from quasielastic electron-deuteron scattering, which is useful for measurements of spin observables in electron-neutron inelastic scattering. However, at the highest missing (neutron) momenta, FSI effects become important and must be accounted for

    Measurement of target and double-spin asymmetries for the (e)over-right-arrow (p)over-right-arrow -\u3e e pi(+)(n) reaction in the nucleon resonance region at low Q(2)

    Get PDF
    We report measurements of target- and double-spin asymmetries for the exclusive channel (e) over right arrow (p) over right arrow - \u3e ep(+)(n) in the nucleon resonance region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). These asymmetries were extracted from data obtained using a longitudinally polarized NH3 target and a longitudinally polarized electron beam with energies 1.1, 1.3, 2.0, 2.3, and 3.0 GeV. The new results are consistent with previous CLAS publications but are extended to a low Q(2) range from 0.0065 to 0.35 (GeV/c)(2). The Q(2) access was made possible by a custom-built Cherenkov detector that allowed the detection of electrons for scattering angles as low as 6 degrees. These results are compared with the unitary isobar models JANR and MAID, the partial-wave analysis prediction from SAID, and the dynamic model DMT. In many kinematic regions our results, in particular results on the target asymmetry, help to constrain the polarization-dependent components of these models

    Target and beam-target spin asymmetries in exclusive pi(+) and pi(-) electroproduction with 1.6-to 5.7-GeV electrons

    Get PDF
    Beam-target double-spin asymmetries and target single-spin asymmetries in exclusive pi(+) and quasiexclusive pi(-) electroproduction were obtained from scattering of 1.6- to 5.7-GeV longitudinally polarized electrons from longitudinally polarized protons (for pi(+)) and deuterons (for pi(-)) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic range covered is 1.1 \u3c W \u3c 2.6 GeV and 0.05 \u3c Q(2) \u3c 5 GeV2, with good angular coverage in the forward hemisphere. The asymmetry results were divided into approximately 40 000 kinematic bins for pi(+) from free protons and 15 000 bins for pi(-) production from bound nucleons in the deuteron. The present results are found to be in reasonable agreement with fits to previous world data for W \u3c 1.7 GeV and Q(2) \u3c 0.5 GeV2, with discrepancies increasing at higher values of Q(2), especially for W \u3e 1.5 GeV. Very large target-spin asymmetries are observed for W \u3e 1.6 GeV. When combined with cross-section measurements, the present results can provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q(2), for resonances with masses as high as 2.3 GeV
    corecore