35 research outputs found

    Allergic rhinitis is a local disease: the role of local IgE production, basophils and mast cells

    Get PDF
    The introduction to this thesis summarizes the literature which indicates that there is a discrepancy between sensitisation and allergic disease. Two aspects which might play a role in this discrepancy are the differences between production and funtion of local versus systemic lgE and the differences in mast cell and basophil function in the blood compared to in the tissues. Mast cells, basophils and IgE are key players in the allergic inflammation. The aim of the studies described in this thesis was to focus on these differences between local and systemic function of these key factors. The research questions addressed in this thesis are: Mast cells and basophils seem to play an important role in the pathogenesis of allergic rhinitis. Do the phenotypes of mast cells and basophilic cells changed by allergen provocation in the nasal mucosa of allergic rhinitis patients (Chapter 3)? The developmental relationship bet\veen mast cells and basophils has not yet been totally resolved. What is the relation bet\veen basophil progenitors, mast cell progenitors, basophils and mast cells in the circulation and in the nasal mucosa (Chapter 3)? Allergic mucosa inflammation is regulated by the local production and release of several Th2 cytokines. Which increase in cytokines and chemokines is correlated to inflammatory cells and symptomatology of the patient? What is the time line of the various cytokines and chemokines after allergen provocation (Chapter 4)? Is it possible to develop a method to detect specific lgE in tissues. Does production of specific IgE take place locally in the nasal mucosa (Chapter 5)? Where do basophils and mast-cell of allergi

    Differences in nasal cellular infiltrates between allergic children and age-matched controls

    Get PDF
    Little is known about the cellular infiltrates in the nasal mucosa of children. This study was set up to compare the nasal cellular infiltrates in biopsy specimens from allergic children and controls. Atopic children were distinguished from controls on the basis of symptoms of allergic rhinitis and/or asthma, total serum immunoglobulin (Ig)E, family history and specific serum IgE to food and aeroallergens. Fifteen allergic patients (median age 4.3 yrs) and 15 age-matched nonallergic control subjects were evaluated. The number of cells positive for CD1a, CD4, CD8, CD19, CD68, chymase, tryptase, IgE and major basic protein was determined in the mucosa of the inferior turbinate. A significantly higher number of IgE-positive cells and mast cells was found in the epithelia of the allergic group. In the lamina propria, higher numbers of IgE-positive cells and eosinophils were found. Langerhans' cells positive for IgE were only seen in allergic children with specific serum IgE against aeroallergens. These children also had a higher number of IgE-positive mast cells compared to controls and atopic children without specific serum IgE. These results show that the nasal cellular infiltrates of allergic children differ from nonallergic control subjects. Prior to the detection of specific serum immunoglobulin E, cellular changes can be found in the nasal mucosa of atopic children

    Allogeneic chondrogenically differentiated human bone marrow stromal cells do not induce dendritic cell maturation

    Get PDF
    Bone marrow stromal cell (BMSC)-mediated endochondral bone formation may be a promising alternative to the current gold standards of autologous bone transplantation, in the development of novel methods for bone repair. Implantation of chondrogenically differentiated BMSCs leads to bone formation in vivo via endochondral ossification. The success of this bone formation in an allogeneic system depends upon the interaction between the implanted constructs and the host immune system. The current study investigated the effect of chondrogenically differentiated human bone marrow stromal cell (hBMSC) pellets on the maturation and function of dendritic cells (DCs) by directly coculturing bone forming chondrogenic hBMSC pellets and immature or lipopolysaccharide (LPS)-matured DCs in vitro. Allogeneic chondrogenic hBMSC pellets did not affect the expression of CD80, CD86, or HLADR on immature or LPS-matured DCs following 24, 48, or 72 hr of coculture. Furthermore, they did not induce or inhibit antigen uptake or migration of the DCs over time. IL-6 was secreted by allogeneic chondrogenic hBMSC pellets in response to LPS-matured DCs. Overall, this study has demonstrated that maturation of immature DCs was not influenced by allogeneic chondrogenic hBMSC pellets. This suggests that allogeneic chondrogenic hBMSC pellets do not stimulate immunogenic responses from DCs in vitro and are not expected to indirectly activate T cells via DCs. For this reason, allogeneic chondrogenic bone marrow stromal cell pellets are promising candidates for future tissue engineering strategies utilising allogeneic cells for bone repair

    The effect of nasal steroid aqueous spray on nasal complaint scores and cellular infiltrates in the nasal mucosa of patients with nonallergic, noninfectious perennial rhinitis

    Get PDF
    Topical corticosteroids are the therapy of choice for nonallergic, noninfectious perennial rhinitis (NANIPER). However, the efficacy of steroid therapy in NANIPER is controversial, as is its mode of action. To our surprise, of 300 patients initially diagnosed as having NANIPER, only 65 reached threshold nasal symptom scores. Patients were randomized into four different treatment regimens: placebo administered twice daily (BD) for 8 weeks, fluticasone propionate aqueous nasal spray (FPANS) (200 microg) once daily (OD) and placebo OD for 8 weeks, FPANS (200 microg) OD and placebo OD for 4 weeks followed by FPANS (200 microg) BD for 4 weeks, and FPANS (200 microg) BD for 8 weeks. A small decrease in nasal symptoms was found, which only reached significance for sneezing in the FPANS 200 microg BD group. A significant dose-dependent decrease in immunocompetent cells was found in nasal biopsy specimens obtained before, after 4 weeks, and after 8 weeks of treatment. We conclude that FPANS did not significantly reduce nasal symptoms in this group of selected NANIPER patients, even though a significant effect on cells in the nasal mucosa was see

    Segmental bronchial provocation induces nasal inflammation in allergic rhinitis patients

    Get PDF
    Allergic rhinitis and asthma often coexist and share a genetic background. Pathophysiologic connections between the nose and lungs are still not entirely understood. This study was undertaken to compare allergic inflammation and clinical findings in the upper and lower airways after segmental bronchial provocation (SBP) in nonasthmatic allergic rhinitis patients. Eight nonasthmatic, grass pollen-sensitive patients with allergic rhinitis and eight healthy controls were included. Bronchial biopsies and blood samples were taken before (T(0)) and 24 h (T(24)) after SBP. Nasal biopsies were obtained at T(0), 1 h after SBP (T(1)), and T(24). Immunohistochemical staining was performed for eosinophils (BMK13), interleukin (IL)-5, and eotaxin. The number of eosinophils increased in the challenged and unchallenged bronchial mucosa (p < 0.05) and in the blood (p = 0.03) of atopic subjects at T(24). We detected an increase of BMK13-positive and eotaxin-positive cells in the nasal lamina propria and enhanced expression of IL-5 in the nasal epitheliu

    Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma

    Get PDF
    Allergic asthma is characterized by chronic airway inflammation and hyperreactivity and is thought to be mediated by an adaptive T helper-2 (Th2) cell-type immune resp-onse. Here, we demonstrate that type 2 pulmonary innate lymphoid cells (ILC2s) significantly contribute to production of the key cytokines IL-5 and IL-13 in experimental asthma. In naive mice, lineage-marker negative ILC2s expressing IL-7Rα, CD25, Sca-1, and T1/ST2(IL-33R) were present in lungs and mediastinal lymph nodes (MedLNs), but not in broncho-alveolar lavage (BAL) fluid. Upon intranasal administration of IL-25 or IL-33, an asthma phenotype was induced, whereby ILC2s accumulated in lungs, MedLNs, and BAL fluid

    Notch signaling in T cells is essential for allergic airway inflammation, but expression of the Notch ligands Jagged 1 and Jagged 2 on dendritic cells is dispensable

    Get PDF
    __Background:__ Allergic asthma is characterized by a TH2 response induced by dendritic cells (DCs) that present inhaled allergen. Although the mechanisms by which they instruct TH2 differentiation are still poorly understood, expression of the Notch ligand Jagged on DCs has been implicated in this process. __Objective:__ We sought to establish whether Notch signaling induced by DCs is critical for house dust mite (HDM)-driven allergic airway inflammation (AAI) in vivo. __Methods:__ The induction of Notch ligand expression on DC subsets by HDM was quantified by using quantitative real-time PCR. We used an HDM-driven asthma mouse model to compare the capacity of Jagged 1 and Jagged 2 single- and double-deficient DCs to induce AAI. In addition, we studied AAI in mice with a T cell-specific deletion of recombination signal-binding protein for immunoglobulin Jκ region (RBPJκ), a downstream effector of Notch signaling. __Results:__ HDM exposure promoted expression of Jagged 1, but not Jagged 2, on DCs. In agreement with published findings, in vitro-differentiated and HDM-pulsed Jagged 1 and Jagged 2 double-deficient DCs lacked the capacity to induce AAI. However, after in vivo intranasal sensitization and challenge with HDM, DC-specific Jagged 1 or Jagged 2 single- or double-deficient mice had eosinophilic airway inflammation and a TH2 cell activation phenotype that was not different from that in control littermates. In contrast, RBPJκ-def

    PDE3 Inhibition Reduces Epithelial Mast Cell Numbers in Allergic Airway Inflammation and Attenuates Degranulation of Basophils and Mast Cells

    Get PDF
    Epithelial mast cells are generally present in the airways of patients with allergic asthma that are inadequately controlled. Airway mast cells (MCs) are critically involved in allergic airway inflammation and contribute directly to the main symptoms of allergic patients. Phosphodiesterase 3 (PDE3) tailors signaling of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which are critical intracellular second messenger molecules in various signaling pathways. This paper investigates the pathophysiological role and disease-modifying effects of PDE3 in mouse bone marrow-derived MCs (bmMCs), human LAD2- and HMC1 mast cell lines, human blood basophils, and peripheral blood-derived primary human MCs (HuMCs). In a chronic house dust mite (HDM)-driven allergic airway inflammation mouse model, we observed that PDE3 deficiency or PDE3 inhibition (PDE3i) therapy reduced the numbers of epithelial MCs, when compared to control mice. Mouse bone marrow-derived MCs (bmMCs) and the human HMC1 and LAD2 cell lines predominantly expressed PDE3B and PDE4A. BmMCs from Pde3−/− mice showed reduced loss of the degranulation marker CD107b compared with wild-type BmMCs, when stimulated in an immunoglobulin E (IgE)-dependent manner. Following both IgE-mediated and substance P-mediated activation, PDE3i-pretreated basophils, LAD2 cells, and HuMCs, showed less degranulation than diluent controls, as measured by surface CD63 expression. MCs lacking PDE3 or treated with the PDE3i enoximone exhibited a lower calcium flux upon stimulation with ionomycine. In conclusion PDE3 plays a critical role in basophil and mast cell degranulation and therefore its inhibition may be a treatment option in allergic disease
    corecore