87 research outputs found
Implications of Weak-Interaction Space Deformation for Neutrino Mass Measurements
The negative values for the squares of both electron and muon neutrino masses
obtained in recent experiments are explained as a possible consequence of a
change in metric within the weak-interaction volume in the energy-momentum
representation. Using a model inspired by a combination of the general theory
of relativity and the theory of deformation for continuous media, it is shown
that the negative value of the square of the neutrino mass can be obtained
without violating allowed physical limits. The consequence is that the negative
value is not necessary unphysical.Comment: 12 pages, 5 figures, LaTe
Radial elasticity of multi-walled carbon nanotubes
We report an experimental and a theoretical study of the radial elasticity of
multi-walled carbon nanotubes as a function of external radius. We use atomic
force microscopy and apply small indentation amplitudes in order to stay in the
linear elasticity regime. The number of layers for a given tube radius is
inferred from transmission electron microscopy, revealing constant ratios of
external to internal radii. This enables a comparison with molecular dynamics
results, which also shed some light onto the applicability of Hertz theory in
this context. Using this theory, we find a radial Young modulus strongly
decreasing with increasing radius and reaching an asymptotic value of 30 +/- 10
GPa.Comment: 5 pages, 3 figure
Analytical Solution for the Deformation of a Cylinder under Tidal Gravitational Forces
Quite a few future high precision space missions for testing Special and
General Relativity will use optical resonators which are used for laser
frequency stabilization. These devices are used for carrying out tests of the
isotropy of light (Michelson-Morley experiment) and of the universality of the
gravitational redshift. As the resonator frequency not only depends on the
speed of light but also on the resonator length, the quality of these
measurements is very sensitive to elastic deformations of the optical resonator
itself. As a consequence, a detailed knowledge about the deformations of the
cavity is necessary. Therefore in this article we investigate the modeling of
optical resonators in a space environment. Usually for simulation issues the
Finite Element Method (FEM) is applied in order to investigate the influence of
disturbances on the resonator measurements. However, for a careful control of
the numerical quality of FEM simulations a comparison with an analytical
solution of a simplified resonator model is beneficial. In this article we
present an analytical solution for the problem of an elastic, isotropic,
homogeneous free-flying cylinder in space under the influence of a tidal
gravitational force. The solution is gained by solving the linear equations of
elasticity for special boundary conditions. The applicability of using FEM
codes for these simulations shall be verified through the comparison of the
analytical solution with the results gained within the FEM code.Comment: 23 pages, 3 figure
A High Magnification UV Lens for High Temperature Optical Strain Measurements
Digital Image Correlation (DIC) measures full-field strains by tracking displacements of a specimen using images taken before and after deformation. At high temperatures, materials emit light in the form of blackbody radiation, which can interfere with DIC images. To screen out that light, DIC has been recently adapted by using ultraviolet (UV) range cameras, lenses, and filters. Before now, UV-DIC had been demonstrated at the centimeter scale using commercially available UV lenses and filters. Commercial high-magnification lenses using visible light have also been used for DIC. However, there is currently no commercially available high-magnification lens that will allow images to be taken (a) in the UV range, (b) at a submillimeter scale, and (c) from a relatively long working distance separating a specimen inside a test chamber and a camera outside the chamber. In this work, a custom UV high-magnification lens is demonstrated to perform high-magnification, high-temperature DIC measurements. To demonstrate the capabilities of this lens, a series of thermo-mechanical tests was run on a stainless-steel ring specimen. Two UV cameras performed simultaneous measurements: one at lower magnification using a commercial UV lens, and one with the custom high-magnification UV lens. At room temperature, the custom lens produces sufficiently bright images to perform DIC, while at high temperature (demonstrated to 900 °C) the images retained sufficient contrast while avoiding oversaturation. The lens can detect submillimeter rigid motion and tensile strains from long working distances and high magnification. These tests show that the custom lens is suitable for use in high-magnification UV-DIC measurements
Resilin and chitinous cuticle form a composite structure for energy storage in jumping by froghopper insects
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background Many insects jump by storing and releasing energy in elastic structures within their bodies. This allows them to release large amounts of energy in a very short time to jump at very high speeds. The fastest of the insect jumpers, the froghopper, uses a catapult-like elastic mechanism to achieve their jumping prowess in which energy, generated by the slow contraction of muscles, is released suddenly to power rapid and synchronous movements of the hind legs. How is this energy stored? Results The hind coxae of the froghopper are linked to the hinges of the ipsilateral hind wings by pleural arches, complex bow-shaped internal skeletal structures. They are built of chitinous cuticle and the rubber-like protein, resilin, which fluoresces bright blue when illuminated with ultra-violet light. The ventral and posterior end of this fluorescent region forms the thoracic part of the pivot with a hind coxa. No other structures in the thorax or hind legs show this blue fluorescence and it is not found in larvae which do not jump. Stimulating one trochanteral depressor muscle in a pattern that simulates its normal action, results in a distortion and forward movement of the posterior part of a pleural arch by 40 μm, but in natural jumping, the movement is at least 100 μm. Conclusion Calculations showed that the resilin itself could only store 1% to 2% of the energy required for jumping. The stiffer cuticular parts of the pleural arches could, however, easily meet all the energy storage needs. The composite structure therefore, combines the stiffness of the chitinous cuticle with the elasticity of resilin. Muscle contractions bend the chitinous cuticle with little deformation and therefore, store the energy needed for jumping, while the resilin rapidly returns its stored energy and thus restores the body to its original shape after a jump and allows repeated jumping
- …