24,804 research outputs found

    Comment on "Evidence for nontrivial ground-state structure of 3d +/- J spin glasses"

    Full text link
    In a recent Letter [Europhys. Lett. 40, 429 (1997)], Hartmann presented results for the structure of the degenerate ground states of the three-dimensional +/- J spin glass model obtained using a genetic algorithm. In this Comment, I argue that the method does not produce the correct thermodynamic distribution of ground states and therefore gives erroneous results for the overlap distribution. I present results of simulated annealing calculations using different annealing rates for cubic lattices with N=4*4*4spins. The disorder-averaged overlap distribution exhibits a significant dependence on the annealing rate, even when the energy has converged. For fast annealing, moments of the distribution are similar to those presented by Hartmann. However, as the annealing rate is lowered, they approach the results previously obtained using a multi-canonical Monte Carlo method. This shows explicitly that care must be taken not only to reach states with the lowest energy but also to ensure that they obey the correct thermodynamic distribution, i.e., that the probability is the same for reaching any of the ground states.Comment: 2 pages, Revtex, 1 PostScript figur

    Critical behavior of the Random-Field Ising model at and beyond the Upper Critical Dimension

    Full text link
    The disorder-driven phase transition of the RFIM is observed using exact ground-state computer simulations for hyper cubic lattices in d=5,6,7 dimensions. Finite-size scaling analyses are used to calculate the critical point and the critical exponents of the specific heat, magnetization, susceptibility and of the correlation length. For dimensions d=6,7 which are larger or equal to the assumed upper critical dimension, d_u=6, mean-field behaviour is found, i.e. alpha=0, beta=1/2, gamma=1, nu=1/2. For the analysis of the numerical data, it appears to be necessary to include recently proposed corrections to scaling at and beyond the upper critical dimension.Comment: 8 pages and 13 figures; A consise summary of this work can be found in the papercore database at http://www.papercore.org/Ahrens201

    Critical behavior of the Random-Field Ising Magnet with long range correlated disorder

    Full text link
    We study the correlated-disorder driven zero-temperature phase transition of the Random-Field Ising Magnet using exact numerical ground-state calculations for cubic lattices. We consider correlations of the quenched disorder decaying proportional to r^a, where r is the distance between two lattice sites and a<0. To obtain exact ground states, we use a well established mapping to the graph-theoretical maximum-flow problem, which allows us to study large system sizes of more than two million spins. We use finite-size scaling analyses for values a={-1,-2,-3,-7} to calculate the critical point and the critical exponents characterizing the behavior of the specific heat, magnetization, susceptibility and of the correlation length close to the critical point. We find basically the same critical behavior as for the RFIM with delta-correlated disorder, except for the finite-size exponent of the susceptibility and for the case a=-1, where the results are also compatible with a phase transition at infinitesimal disorder strength. A summary of this work can be found at the papercore database at www.papercore.org.Comment: 9 pages, 13 figure

    Analysis of the loop length distribution for the negative weight percolation problem in dimensions d=2 through 6

    Full text link
    We consider the negative weight percolation (NWP) problem on hypercubic lattice graphs with fully periodic boundary conditions in all relevant dimensions from d=2 to the upper critical dimension d=6. The problem exhibits edge weights drawn from disorder distributions that allow for weights of either sign. We are interested in in the full ensemble of loops with negative weight, i.e. non-trivial (system spanning) loops as well as topologically trivial ("small") loops. The NWP phenomenon refers to the disorder driven proliferation of system spanning loops of total negative weight. While previous studies where focused on the latter loops, we here put under scrutiny the ensemble of small loops. Our aim is to characterize -using this extensive and exhaustive numerical study- the loop length distribution of the small loops right at and below the critical point of the hypercubic setups by means of two independent critical exponents. These can further be related to the results of previous finite-size scaling analyses carried out for the system spanning loops. For the numerical simulations we employed a mapping of the NWP model to a combinatorial optimization problem that can be solved exactly by using sophisticated matching algorithms. This allowed us to study here numerically exact very large systems with high statistics.Comment: 7 pages, 4 figures, 2 tables, paper summary available at http://www.papercore.org/Kajantie2000. arXiv admin note: substantial text overlap with arXiv:1003.1591, arXiv:1005.5637, arXiv:1107.174

    Typical and large-deviation properties of minimum-energy paths on disordered hierarchical lattices

    Full text link
    We perform numerical simulations to study the optimal path problem on disordered hierarchical graphs with effective dimension d=2.32. Therein, edge energies are drawn from a disorder distribution that allows for positive and negative energies. This induces a behavior which is fundamentally different from the case where all energies are positive, only. Upon changing the subtleties of the distribution, the scaling of the minimum energy path length exhibits a transition from self-affine to self-similar. We analyze the precise scaling of the path length and the associated ground-state energy fluctuations in the vincinity of the disorder critical point, using a decimation procedure for huge graphs. Further, using an importance sampling procedure in the disorder we compute the negative-energy tails of the ground-state energy distribution up to 12 standard deviations away from its mean. We find that the asymptotic behavior of the negative-energy tail is in agreement with a Tracy-Widom distribution. Further, the characteristic scaling of the tail can be related to the ground-state energy flucutations, similar as for the directed polymer in a random medium.Comment: 10 pages, 10 figures, 3 table

    Configurational statistics of densely and fully packed loops in the negative-weight percolation model

    Full text link
    By means of numerical simulations we investigate the configurational properties of densely and fully packed configurations of loops in the negative-weight percolation (NWP) model. In the presented study we consider 2d square, 2d honeycomb, 3d simple cubic and 4d hypercubic lattice graphs, where edge weights are drawn from a Gaussian distribution. For a given realization of the disorder we then compute a configuration of loops, such that the configurational energy, given by the sum of all individual loop weights, is minimized. For this purpose, we employ a mapping of the NWP model to the "minimum-weight perfect matching problem" that can be solved exactly by using sophisticated polynomial-time matching algorithms. We characterize the loops via observables similar to those used in percolation studies and perform finite-size scaling analyses, up to side length L=256 in 2d, L=48 in 3d and L=20 in 4d (for which we study only some observables), in order to estimate geometric exponents that characterize the configurations of densely and fully packed loops. One major result is that the loops behave like uncorrelated random walks from dimension d=3 on, in contrast to the previously studied behavior at the percolation threshold, where random-walk behavior is obtained for d>=6.Comment: 11 pages, 7 figure
    corecore