6 research outputs found

    Immersive Wave Propagation Experimentation: Physical Implementation and One-Dimensional Acoustic Results

    No full text
    We present a fundamentally new approach to laboratory acoustic and seismic wave experimentation that enables full immersion of a physical wave propagation experiment within a virtual numerical environment. Using a recent theory of immersive boundary conditions that relies on measurements made on an inner closed surface of sensors, the output of numerous closely spaced sources around the physical domain is continuously varied in time and space. This allows waves to seamlessly propagate back and forth between both domains, without being affected by reflections at the boundaries between both domains, which enables us to virtually expand the size of the physical laboratory and operate at much lower frequencies than previously possible (sonic frequencies as low as 1 kHz). While immersive boundary conditions have been rigorously tested numerically, here we present the first proof of concept for their physical implementation with experimental results from a one-dimensional sound wave tube. These experiments demonstrate the performance and capabilities of immersive boundary conditions in canceling boundary reflections and accounting for long-range interactions with a virtual domain outside the physical experiment. Moreover, we introduce a unique high-performance acquisition, computation, and control system that will enable the real-time implementation of immersive boundary conditions in three dimensions. The system is capable of extrapolating wave fields recorded on 800 simultaneous inputs to 800 simultaneous outputs, through arbitrarily complex virtual background media with an extremely low total system latency of 200  μs. The laboratory allows studying a variety of long-standing problems and poorly understood aspects of wave physics and imaging. Moreover, such real-time immersive experimentation opens up exciting possibilities for the future of laboratory acoustic and seismic experiments and for fields such as active acoustic cloaking and holography

    Elasto-Capillarity Simulations Based on the Navier–Stokes–Cahn–Hilliard Equations

    No full text
    We consider a computational model for complex-fluid-solid interaction based on a diffuse-interface model for the complex fluid and a hyperelastic-material model for the solid. The diffuse-interface complex-fluid model is described by the incompressible Navier-Stokes-Cahn-Hilliard equations with preferential-wetting boundary conditions at the fluid-solid interface. The corresponding fluid traction on the interface includes a capillary-stress contribution, and the dynamic interface condition comprises the traction exerted by the non-uniform fluid-solid surface tension. We present a weak formulation of the aggregated complex-fluid-solid-interaction problem, based on an Arbitrary-Lagrangian-Eulerian formulation of the Navier-Stokes-Cahn-Hilliard equations and a proper reformulation of the complex-fluid traction and the fluid-solid surface tension. To validate the presented complex-fluid-solid-interaction model, we present numerical results and conduct a comparison to experimental data for a droplet on a soft substrate
    corecore