4,073 research outputs found
Proximity induced superconductivity by Bi in topological and films: Evidence for a robust zero energy bound state possibly due to Majorana Fermions
Point contact conductance measurements on topological and
films reveal a signature of superconductivity below 2-3 K. In
particular, critical current dips and a robust zero bias conductance peak are
observed. The latter suggests the presence of zero energy bound states which
could be assigned to Majorana Fermions in an unconventional topological
superconductor. We attribute these novel observations to proximity induced
local superconductivity in the films by small amounts of superconducting Bi
inclusions or segregation to the surface, and provide supportive evidence for
these effects.Comment: Accepted for publication in Physical Review B (Dec. 20, 2011), 15
figures. Version V1: arXiv:1111.3445v1 [cond-mat.supr-con] 15 Nov 201
A high resolution coupled hydrologic–hydraulic model (HiResFlood-UCI) for flash flood modeling
HiResFlood-UCI was developed by coupling the NWS's hydrologic model (HL-RDHM) with the hydraulic model (BreZo) for flash flood modeling at decameter resolutions. The coupled model uses HL-RDHM as a rainfall-runoff generator and replaces the routing scheme of HL-RDHM with the 2D hydraulic model (BreZo) in order to predict localized flood depths and velocities. A semi-automated technique of unstructured mesh generation was developed to cluster an adequate density of computational cells along river channels such that numerical errors are negligible compared with other sources of error, while ensuring that computational costs of the hydraulic model are kept to a bare minimum. HiResFlood-UCI was implemented for a watershed (ELDO2) in the DMIP2 experiment domain in Oklahoma. Using synthetic precipitation input, the model was tested for various components including HL-RDHM parameters (a priori versus calibrated), channel and floodplain Manning n values, DEM resolution (10 m versus 30 m) and computation mesh resolution (10 m+ versus 30 m+). Simulations with calibrated versus a priori parameters of HL-RDHM show that HiResFlood-UCI produces reasonable results with the a priori parameters from NWS. Sensitivities to hydraulic model resistance parameters, mesh resolution and DEM resolution are also identified, pointing to the importance of model calibration and validation for accurate prediction of localized flood intensities. HiResFlood-UCI performance was examined using 6 measured precipitation events as model input for model calibration and validation of the streamflow at the outlet. The Nash–Sutcliffe Efficiency (NSE) obtained ranges from 0.588 to 0.905. The model was also validated for the flooded map using USGS observed water level at an interior point. The predicted flood stage error is 0.82 m or less, based on a comparison to measured stage. Validation of stage and discharge predictions builds confidence in model predictions of flood extent and localized velocities, which are fundamental to reliable flash flood warning
A Monte Carlo study of the three-dimensional Coulomb frustrated Ising ferromagnet
We have investigated by Monte-Carlo simulation the phase diagram of a
three-dimensional Ising model with nearest-neighbor ferromagnetic interactions
and small, but long-range (Coulombic) antiferromagnetic interactions. We have
developed an efficient cluster algorithm and used different lattice sizes and
geometries, which allows us to obtain the main characteristics of the
temperature-frustration phase diagram. Our finite-size scaling analysis
confirms that the melting of the lamellar phases into the paramgnetic phase is
driven first-order by the fluctuations. Transitions between ordered phases with
different modulation patterns is observed in some regions of the diagram, in
agreement with a recent mean-field analysis.Comment: 14 pages, 10 figures, submitted to Phys. Rev.
Mineral content analysis of atmospheric dust using hyperspectralinformation from space
The Bodélé depression of northern Chad is considered one of the world\u27s largest sources of atmospheric mineral dust. Mineral composition of such transported dust is essential to our understanding of climate forcing, mineralogy of dust sources, aerosol optical properties, and mineral deposition to Amazon forests. In this study we examine hyperspectral information acquired over the Bodélé by EO‐1 Hyperion satellite during a dust storm event and during a calm clean day. We show that, for the suspended dust, the absorption signature can be decoupled from scattering, allowing detection of key minerals. Our results, based on the visible and shortwave infrared hyperspectral data, demonstrate that the Bodélé surface area is composed of iron‐oxides, clays (kaosmectite) and sulfate groups (gypsum). Atmospheric dust spectra downwind of Bodélé reveal striking differences in absorption signatures across shortwave infrared from those of the underlying surface
The role of intermolecular coupling in the photophysics of disordered organic semiconductors: Aggregate emission in regioregular polythiophene
We address the role of excitonic coulping on the nature of photoexcitations
in the conjugated polymer regioregular poly(3-hexylthiophene). By means of
temperature-dependent absorption and photoluminescence spectroscopy, we show
that optical emission is overwhelmingly dominated by weakly coupled
H-aggregates. The relative absorbance of the 0-0 and 0-1 vibronic peaks
provides a powerfully simple means to extract the magnitude of the
intermolecular coupling energy, approximately 5 and 30 meV for films spun from
isodurene and chloroform solutions respectively.Comment: 10 pages, 4 figures, published in Phys. Rev. Let
Discernible rhythm in the spatio/temporal distributions of transatlantic dust
The differences in North African dust emission regions and transport routes, between the boreal winter and summer, are thoroughly documented. Here we re-examine the spatial and temporal characteristics of dust transport over the tropical and subtropical North Atlantic Ocean, using 10 yr of satellite data, in order to better characterize the different dust transport periods. We see a robust annual triplet: a discernible rhythm of transatlantic dust weather . The proposed annual partition is composed of two heavy loading periods, associated here with a northern-route period and southern-route period, and one light-loading period, accompanied by unusually low average optical depth of dust. The two dusty periods are quite different in character: their duration, transport routes, characteristic aerosol loading and frequency of pronounced dust episodes. The southern-route period lasts ~4 months. It is characterized by a relatively steady southern positioning, low frequency of dust events, low background values and high variance in dust loading. The northern-route period lasts ~6.5 months and is associated with a steady drift northward of ~0.1 latitude day−1, reaching ~1500 km north of the southern-route. The northern period is characterized by higher frequency of dust events, higher (and variable) background and smaller variance in dust loading. It is less episodic than the southern period. Transitions between the periods are brief. Separation between the southern and northern periods is marked by northward latitudinal shift in dust transport and by moderate reduction in the overall dust loading. The second transition, between the northern and southern periods, commences with an abrupt reduction in dust loading and rapid shift southward of ~0.2 latitude day−1, and ~1300 km in total. Based on cross-correlation analyses, we attribute the observed rhythm to the contrast between the northwestern and southern Saharan dust source spatial distributions. Despite the vast difference in areas, the Bodélé Depression, located in Chad, appears to modulate transatlantic dust patterns about half the time
- …