306 research outputs found

    Topological Casimir effect in nanotubes and nanoloopes

    Full text link
    The Casimir effect is investigated in cylindrical and toroidal carbon nanotubes within the framework of the Dirac-like model for the electronic states. The topological Casimir energy is positive for metallic cylindrical nanotubes and is negative for semiconducting ones. The toroidal compactification of a cylindrical nanotube along its axis increases the Casimir energy for metallic-type (periodic) boundary conditions along its axis and decreases the Casimir energy for the semiconducting-type compactifications. For finite length metallic nanotubes the Casimir forces acting on the tube edges are always attractive, whereas for semiconducting-type ones they are attractive for small lengths of the nanotube and repulsive for large lengths.Comment: 5 pages, 1 figure, Contribution to Proceedings of QFEXT09, 21-25 September 2009, Oklahoma, US

    Spinor Casimir densities for a spherical shell in the global monopole spacetime

    Full text link
    We investigate the vacuum expectation values of the energy-momentum tensor and the fermionic condensate associated with a massive spinor field obeying the MIT bag boundary condition on a spherical shell in the global monopole spacetime. In order to do that it was used the generalized Abel-Plana summation formula. As we shall see, this procedure allows to extract from the vacuum expectation values the contribution coming from to the unbounded spacetime and explicitly to present the boundary induced parts. As to the boundary induced contribution, two distinct situations are examined: the vacuum average effect inside and outside the spherical shell. The asymptotic behavior of the vacuum densities is investigated near the sphere center and surface, and at large distances from the sphere. In the limit of strong gravitational field corresponding to small values of the parameter describing the solid angle deficit in global monopole geometry, the sphere-induced expectation values are exponentially suppressed. As a special case we discuss the fermionic vacuum densities for the spherical shell on background of the Minkowski spacetime. Previous approaches to this problem within the framework of the QCD bag models have been global and our calculation is a local extension of these contributions.Comment: 20 pages, 4 figure

    Wightman function and vacuum fluctuations in higher dimensional brane models

    Full text link
    Wightman function and vacuum expectation value of the field square are evaluated for a massive scalar field with general curvature coupling parameter subject to Robin boundary conditions on two codimension one parallel branes located on (D+1)(D+1)-dimensional background spacetime AdSD1+1×ΣAdS_{D_1+1}\times \Sigma with a warped internal space Σ\Sigma . The general case of different Robin coefficients on separate branes is considered. The application of the generalized Abel-Plana formula for the series over zeros of combinations of cylinder functions allows us to extract manifestly the part due to the bulk without boundaries. Unlike to the purely AdS bulk, the vacuum expectation value of the field square induced by a single brane, in addition to the distance from the brane, depends also on the position of the brane in the bulk. The brane induced part in this expectation value vanishes when the brane position tends to the AdS horizon or AdS boundary. The asymptotic behavior of the vacuum densities near the branes and at large distances is investigated. The contribution of Kaluza-Klein modes along Σ\Sigma is discussed in various limiting cases. As an example the case Σ=S1\Sigma =S^1 is considered, corresponding to the AdSD+1AdS_{D+1} bulk with one compactified dimension. An application to the higher dimensional generalization of the Randall-Sundrum brane model with arbitrary mass terms on the branes is discussed.Comment: 25 pages, 2 figures, discussion added, accepted for publication in Phys.Rev.
    • …
    corecore