17,452 research outputs found

    Potential of an ionic impurityin a large 4^4He cluster

    Get PDF
    This paper presents an analysis of the motion of an impurity ion in a nanometer scale 4^4He cluster. Due to induction forces, ions are strongly localized near the center of the cluster, with a root mean squared thermal displacements of only a few \AA. The trapping potential is found to be nearly harmonic, with a frequency of 2.3(1.0) GHz for a positive (negative) ion in a He cluster of radius 5 nm. The anharmonicity is small and positive (energy increases slightly faster than linear with quantum number). It is suggested that by using frequency sweep microwave radiation, it should be possible to drive the ion center of mass motion up to high quantum numbers, allowing the study of the critical velocity as a function of cluster size.Comment: 14 pages, 0 figures, To be published in Molecular Physic

    Quantum Hydrodynamic Model for the enhanced moments of Inertia of molecules in Helium Nanodroplets: Application to SF6_6

    Get PDF
    The increase in moment of inertia of SF6_6 in helium nanodroplets is calculated using the quantum hydrodynamic approach. This required an extension of the numerical solution to the hydrodynamic equation to three explicit dimensions. Based upon an expansion of the density in terms of the lowest four Octahedral spherical harmonics, the predicted increase in moment of inertia is 170uA˚2170 {\rm u \AA^2}, compared to an experimentally determined value of 310(10)uA˚2310(10) {\rm u \AA^2}, i.e., 55% of the observed value. The difference is likely in at least part due to lack of convergence with respect to the angular expansion, but at present we do not have access to the full densities from which a higher order expansion can be determined. The present results contradict those of Kwon et al., J. Chem. Phys. {\bf 113}, 6469 (2000), who predicted that the hydrodynamic theory predicted less than 10% of the observed increase in moment of inertia.Comment: 10 pages, including 1 figur

    Hot Electron Effects in the 2D Superconductor-Insulator Transition

    Full text link
    The parallel magnetic field tuned two-dimensional superconductor-insulator transition has been investigated in ultrathin films of amorphous Bi. The resistance is found to be independent of temperature on both sides of the transition below approximately 120 mK. Several observations suggest that this regime is not intrinsically "metallic" but results from the failure of the films' electrons to cool. The onset of this temperature-independent regime can be moved to higher temperatures by either increasing the measuring current or the level of electromagnetic noise. Temperature scaling is successful above 120 mK. Electric field scaling can be mapped onto temperature scaling by relating the electric fields to elevated electron temperatures. These results cast doubt on the existence of an intrinsic metallic regime and on the independent determination of the correlation length and dynamical critical exponents obtained by combining the results of electric field and temperature scaling.Comment: 4 pages, 4 figure

    Measurement of the Neutral Weak Form Factors of the Proton

    Full text link
    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton. The kinematic point (theta_lab = 12.3 degrees and Q^2=0.48 (GeV/c)^2) is chosen to provide sensitivity, at a level that is of theoretical interest, to the strange electric form factor G_E^s. The result, A=-14.5 +- 2.2 ppm, is consistent with the electroweak Standard Model and no additional contributions from strange quarks. In particular, the measurement implies G_E^s + 0.39G_M^s = 0.023 +- 0.034 (stat) +- 0.022 (syst) +- 0.026 (delta G_E^n), where the last uncertainty arises from the estimated uncertainty in the neutron electric form factor.Comment: 10 pages, 4 figures, submitted to Phys. Rev. Let

    Differing preferences of Antarctic soil nematodes for microbial prey

    Get PDF
    We tested the preferences of three nematode taxa, Geomonhystera villosa, Plectus spp. and Teratocephalus spp., extracted from moss at Signy Island in the Maritime Antarctic, for two microalgae, three microfungi and six heterotrophic bacteria, each also from soils at Signy Island. Choice test experiments on water agar medium, in which nematodes were enumerated in wells containing microbes at 24 and 48 h, indicated that there were differing preferences between nematodes for distinct prey. G. villosa was significantly attracted to the alga Chlorella cf. minutissima and the fungus Mortierella hyalina, and was more attracted to all algae and fungi than either of the other two nematodes. Both G. villosa and Teratocephalus spp. were attracted to an actinobacterium. Plectus spp. were significantly attracted to the alga Stichococcus bacillaris and bacteria with close taxonomic affinities to Arthrobacter, Pseudomonas and Polaromonas. Experiments using 0.5 μm diameter fluorescent beads indicated significantly increased ingestion by nematodes in the presence of each of these microbes compared with controls, except by Plectus spp. in the presence of S. bacillaris. We conclude that complex trophic interactions may occur in apparently simple Antarctic soil food webs

    On integers for which the sum of divisors is the square of the squarefree core

    Get PDF
    We study integers n > 1 satisfying the relation σ(n) = γ(n) ² , where σ(n) and γ(n) are the sum of divisors and the product of distinct primes dividing n, respectively. We show that the only solution n with at most four distinct prime factors is n = 1782. We show that there is no solution which is fourth power free. We also show that the number of solutions up to x > 1 is at most x ⅟⁴⁺ᵉ for any ε > 0 and all x > xε. Further, call n primitive if no proper unitary divisor d of n satisfies σ(d) | γ(d) ² . We show that the number of primitive solutions to the equation up to x is less than xᵉ for x > xₑ
    corecore