1,059 research outputs found
A scalable data-plane architecture for one-to-one device-to-device communications in LTE-Advanced
One-to-one device-to-device (D2D) communications are expected to play a major role in future releases of LTE-A, as well as in future 5G networks. Despite the abundance of works on resource allocation for D2D communications, few works, if any, discuss how D2D should be realized within the LTE-A protocol stack. While it is generally understood that D2D endpoints should be able to communicate both on the direct path or sidelink (SL) and on the relayed path (RP) through the eNB, little has been said on how this can be achieved in practice. In this paper we present a comprehensive proposal for a data-plane architecture for D2D communication: we define how communications should occur on the SL and the RP, and propose a solution for the challenges associated with mode switching between the SL and the RP. In particular, we argue that two different communication modes on the RP are required to allow D2D connections to be kept alive across cell borders in a multicell environment. Our proposal is scalable, since it does not require any signaling, and is guaranteed to not introduce losses. We evaluate our proposal through detailed system-level simulations, also focusing on its interplay with transport-layer protocols
Romanesque and territory. The construction materials of Sardinian medieval churches: new approaches to the valorization, conservation and restoration
This paper is intended to illustrate a multidisciplinary research project devoted to the study of the constructive materials of the Romanesque churches in Sardinia during the “Giudicati” period (11th -13th centuries). The project focuses on the relationship between a selection of monuments and their territory, both from a historical-architectural perspective and from a more modern perspective addressing future restoration works. The methodologies of the traditional art-historical research (study of bibliographic, epigraphic and archival sources, formal reading of artifacts) are flanked by new technologies: digital surveys executed with a 3D laser-scanner, analyses of the materials (stones, mortars, bricks) with different instrumental methods: X-ray fluorescence (XRF) and inductively coupled mass spectrometry (ICP-MS) for chemical composition, X-ray diffractometer (XRD) to determine the alteration phases (e.g., soluble salts), optical microscopy and electronic (SEM) to study textures, mineral assemblages and microstructures, termogravimetric/differential scanning, calorimetric analysis (TG/DTA) for the composition of the binder mortars.
This multidisciplinary approach allows the achieving of important results in an archaeometric context: 1) from a historical point of view, with the possible identification of ancient traffics, trade routes, sources of raw materials, construction phases, wall textures; 2) from a conservative point of view, by studying chemical and physical weathering processes of stone materials compatible for replacement in case of future restoration works.
Sardinian Romanesque architectural heritage is particularly remarkable: about 200 churches of different types and sizes, with the almost exclusive use of cut stones. Bi- or poly-chromy, deriving from the use of different building materials, characterizes many of these monuments, becoming also a vehicle for political and cultural meanings. The paper will present some case studies aimed to illustrate the progress of the project and the results achieved
6-axis inertial sensor using cold-atom interferometry
We have developed an atom interferometer providing a full inertial base. This
device uses two counter-propagating cold-atom clouds that are launched in
strongly curved parabolic trajectories. Three single Raman beam pairs, pulsed
in time, are successively applied in three orthogonal directions leading to the
measurement of the three axis of rotation and acceleration. In this purpose, we
introduce a new atom gyroscope using a butterfly geometry. We discuss the
present sensitivity and the possible improvements.Comment: submitted to PR
Minimizing power consumption in virtualized cellular networks
Cellular network nodes should be dynamically switched on/off based on the load requirements of the network, to save power and minimize inter-cell interference. This should be done keeping into account global interference effects, which requires a centralized approach. In this paper, we present an architecture, realized within the Flex5GWare EU project, that manages a large-scale cellular network, switching on and off nodes based on load requirements and context data. We describe the architectural framework and the optimization model that is used to decide the activity state of the nodes. We present simulation results showing that the framework adapts to the minimum power level based on the cell loads
D2D Communications for Large-Scale Fog Platforms: Enabling Direct M2M Interactions
To many, fog computing is considered the next step beyond the current centralized cloud that will support the forthcoming Internet of Things (IoT) revolution. While IoT devices will still communicate with applications running in the cloud, localized fog clusters will appear with IoT devices communicating with application logic running on a proximate fog node. This will add proximity-based machine-to-machine (M2M) communications to standard cloud-computing traffic, and it calls for efficient mobility management for entire fog clusters and energy-efficient communication within them. In this context, long-term evolution-advanced (LTE-A) technology is expected to play a major role as a communication infrastructure that guarantees low deployment costs, native mobility support, and plug-and-play seamless configuration.
We investigate the role of LTE-A in future large-scale IoT systems. In particular, we analyze how the recently
standardized device-to-device (D2D) communication mode can be exploited to effectively enable direct M2M
interactions within fog clusters, and we assess the expected benefits in terms of network resources and
energy consumption. Moreover, we show how the fog-cluster architecture, and its localized-communication
paradigm, can be leveraged to devise enhanced mobility management, building on what LTE-A already has to offer
Evaluation of carcass quality, body and pulmonary lesions detected at the abattoir in heavy pigs subjected or not to tail docking
BackgroundNowadays, body and tail lesions and respiratory disease are some of the greatest problems affecting the health and welfare of pigs. The aim of the study was to measure the prevalence of pleurisy, bronchopneumonia (enzootic pneumonia like lesions) and lesions on tail and body of heavy pigs subjected or not to tail docking through the inspection in Italian abattoirs. Additionally, the effect of tail docking and season was investigated on carcass quality (weight, % of lean meat, and Protected Designation of Origin (PDO) classification). For this purpose, a total 17.256 carcasses belonging to 171 batches from 103 farms were inspected in an Italian abattoir between 2019 and 2022. Enzootic pneumonia (EP) like lesions were scored according to the Madec and Derrien method, while pleurisy was scored using the Italian Slaughterhouse pleuritic evaluation system (SPES). For the tail and body, the lesions were scored according to Welfare Quality. The lesion score index (LSI) was calculated for each area. Data were analysed using a general linear model (GLM) including tail caudectomy, season and distance of the farm from the abattoir.ResultsThe warm season increased the percentage of lesions in carcasses in all parts of the body observed (P < 0.0001). The presence of undocked tail increased the LSI of the tail (P < 0.0001). The percentage of limbs lesions with score 2 and limbs LSI increase with increasing duration of transport (coef. = 0.003, P < 0.001; coef. = 0.008, P < 0.001; respectively). The hot carcass weight and the percentage of carcasses included in the PDO were higher in batches with docked tails (P = 0.027; P < 0.001, respectively), while the percentage of lean meat was higher in batches with undocked tails (P < 0.001). There was a negative correlation between the percentage of carcasses included in PDO and the LSI of tail (r = - 0.422; P < 0.001).ConclusionsIn conclusion, the presence of the undocked tail and the warm season can be considered risk factors for the prevalence of tail lesions, while long transport can increase limb lesions. Furthermore, the carcass weight and meat quality were negatively influenced by tail lesions
Practical feasibility, scalability and effectiveness of coordinated scheduling algorithms in cellular networks towards 5G
Coordinated Scheduling (CS) is used to mitigate inter-cell interference in present (4G) and future (5G) cellular networks. We show that coordination of a cluster of nodes can be formulated as an optimization problem, i.e., placing the Resource Blocks (RB) in each node’s subframe with the least possible over-lapping with neighboring nodes. We provide a clever formulation, which allows optimal solutions to be computed in clusters of ten nodes, and algorithms that compute good suboptimal solutions for clusters of tens of nodes, fast enough for a network to respond to traffic changes in real time. This allows us to assess the relationship between the scale at which CS is performed and its benefits in terms of network energy efficiency and cell-edge user rate. Our results, obtained using realistic power, radiation and Signal-to-Interference-and-Noise-Ratio (SINR) models, show that optimal CS allows a significant protection of cell-edge users. Moreover, this goes hand-in-hand with a reduction in the num-ber of allocated RBs, which in turn allows an operator to reduce its energy consumption. Both benefits actually increase with the size of the clusters. The evaluation is carried out in both a 4G and a foreseen 5G setting, using different power models, system bandwidths and SINR-to-datarate mappings
Chronic treatment with long-acting nifedipine reduces vasoconstriction to endothelin-1 in essential hypertension
Essential hypertension is associated with enhanced biological activity of endothelin-1 (ET-1) and impaired endothelium-dependent vasodilatation. Dihydropyridine calcium antagonists have antioxidant activity in vitro, and they improve endothelial function in vivo. We tested whether calcium antagonists also influence the biological activity of ET-1 in essential hypertensive (EH) patients in the presence and absence of hypercholesterolemia. In 9 healthy subjects (normotensive [NT] subjects, age: 48.3+/-7.6 years; blood pressure: 118+/-8.6/69+/-5.4 mm Hg) and 21 EH subjects (age: 50.0+/-7.8 years; blood pressure: 164.4+/-5.4/103.8+/-4.4 mm Hg), we studied forearm blood flow and its modification induced by intrabrachial administration of ET-1, phenylephrine, acetylcholine, and sodium nitroprusside at baseline and after 24 weeks of treatment with a nifedipine gastrointestinal therapeutic system (30 to 60 mg per day). At baseline, the first dose of ET-1 (0.5 microg/100 mL of forearm tissue per minute) caused a slight vasodilatation in NT but not in EH subjects, whereas the following higher doses caused a comparable dose-dependent vasoconstriction in EH and NT subjects. The effect of acetylcholine was significantly reduced in EH as compared with NT subjects. In contrast, sodium nitroprusside and phenylephrine had similar effects in NT and EH subjects. After chronic treatment with the nifedipine gastrointestinal therapeutic system, the vasoconstrictor effect induced by both ET-1 and phenylephrine was significantly blunted, whereas the response to acetylcholine was significantly increased and the vasodilation to sodium nitroprusside unchanged. Hypercholesterolemic EH subjects showed a further reduced response to acetylcholine compared with normocholesterolemic EH subjects, and the nifedipine gastrointestinal therapeutic system restored the vasodilation to acetylcholine in this subgroup. In conclusion, in EH subjects, chronic treatment with a long-acting dihydropyridine calcium antagonist not only exhibits a blood pressure-lowering effect but also reduces ET-1-induced vasoconstriction and improves endothelium-dependent vasodilation. Those vasculoprotective effects may importantly contribute to a reduction in major clinical events seen during treatment with these compound
- …