2,494 research outputs found
Modeling Northern Hemisphere ice-sheet distribution during MIS 5 and MIS 7 glacial inceptions
The present manuscript compares Marine Iso- tope Stage 5 (MIS 5, 125–115 kyr BP) and MIS 7 (236– 229 kyr BP) with the aim to investigate the origin of the difference in ice-sheet growth over the Northern Hemi- sphere high latitudes between these last two inceptions. Our approach combines a low resolution coupled atmosphere– ocean–sea-ice general circulation model and a 3-D thermo- mechanical ice-sheet model to simulate the state of the ice sheets associated with the inception climate states of MIS 5 and MIS 7. Our results show that external forcing (orbitals and GHG) and sea-ice albedo feedbacks are the main fac- tors responsible for the difference in the land-ice initial state between MIS 5 and MIS 7 and that our cold climate model bias impacts more during a cold inception, such as MIS 7, than during a warm inception, such as MIS 5. In addition, if proper ice-elevation and albedo feedbacks are not taken into consideration, the evolution towards glacial inception is hardly simulated, especially for MIS 7. Finally, results high- light that while simulated ice volumes for MIS 5 glacial in- ception almost fit with paleo-reconstructions, the lack of pre- cipitation over high latitudes, identified as a bias of our cli- mate model, does not allow for a proper simulation of MIS 7 glacial inception
Micromegas in a Bulk
In this paper we present a novel way to manufacture the bulk Micromegas
detector. A simple process based on the PCB (Printed Circuit Board) technology
is employed to produce the entire sensitive detector. Such fabrication process
could be extended to very large area detectors made by the industry. The low
cost fabrication together with the robustness of the electrode materials will
make it extremely attractive for several applications ranging from particle
physics and astrophysics to medicineComment: 6 pages, 4 figure
Prospects for a Dark Matter annihilation signal towards the Sagittarius dwarf galaxy with ground based Cherenkov telescopes
Dwarf galaxies are widely believed to be among the best targets for indirect
dark matter searches using high-energy gamma rays; and indeed gamma-ray
emission from these objects has long been a subject of detailed study for
ground-based atmospheric Cherenkov telescopes. Here, we update current
exclusion limits obtained on the closest dwarf, the Sagittarius dwarf galaxy,
in light of recent realistic dark matter halo models. The constraints on the
velocity-weighted annihilation cross section of the dark matter particle are of
a few 10 cms in the TeV energy range for a 50 h exposure.
The limits are extrapolated to the sensitivities of future Cherenkov Telescope
Arrays. For 200 h of observation time, the sensitivity at 95% C.L. reaches
10 cms. Possible astrophysical backgrounds from gamma-ray
sources dissembled in Sagittarius dwarf are studied. It is shown that with
long-enough observation times, gamma-ray background from millisecond pulsars in
a globular cluster contained within Sagittarius dwarf may limit the sensitivity
to dark matter annihilations.Comment: 12 pages, 5 figures, 2 tables, accepted for publication in Ap
Search for direct CP-violation in K+- --> pi+-pi0pi0 decays
A search for direct CP-violation in K+- --> pi+-pi0pi0 decays based on 47.14
million events has been performed by the NA48/2 experiment at the CERN SPS. The
asymmetry in the Dalitz plot linear slopes A_g=(g^+ - g^-)/(g^+ + g^-) is
measured to be A_g=(1.8 +- 2.6).10^{-4}. The design of the experiment and the
method of analysis provide good control of instrumental charge asymmetries in
this measurement. The precision of the result is limited by statistics and is
almost one order of magnitude better than that of previous measurements by
other experiments.Comment: 14 page
Estimating the binary fraction of planetary nebulae central stars
During the past 20 years, the idea that non-spherical planetary nebulae (PN)
may need a binary or planetary interaction to be shaped was discussed by
various authors. It is now generally agreed that the varied morphologies of PN
cannot be fully explained solely by single star evolution. Observationally,
more binary central stars of planetary nebulae (CSPN) have been discovered,
opening new possibilities to understand the connections between binarity and
morphology. So far, \simeq 45 binary CSPN have been detected, most being close
systems detected via flux variability. To determine the PN binary fraction, one
needs a method to detect wider binaries. We present here recent results
obtained with the various techniques described, concentrating on binary
infrared excess observations aimed at detecting binaries of any separation.Comment: 2 pages, IAU 283: An Eye To The Future proceeding
Measurement of the branching ratio of the decay
From the 2002 data taking with a neutral kaon beam extracted from the
CERN-SPS, the NA48/1 experiment observed 97 candidates with a background contamination of events.
From this sample, the BR() is measured to be
Measurement of the Ratio Gamma(KL -> pi+ pi-)/Gamma(KL -> pi e nu) and Extraction of the CP Violation Parameter |eta+-|
We present a measurement of the ratio of the decay rates Gamma(KL -> pi+
pi-)/Gamma(KL -> pi e nu), denoted as Gamma(K2pi)/Gamma(Ke3). The analysis is
based on data taken during a dedicated run in 1999 by the NA48 experiment at
the CERN SPS. Using a sample of 47000 K2pi and five million Ke3 decays, we find
Gamma(K2pi)/Gamma(Ke3) = (4.835 +- 0.022(stat) +- 0.016(syst)) x 10^-3. From
this we derive the branching ratio of the CP violating decay KL -> pi+ pi- and
the CP violation parameter |eta+-|. Excluding the CP conserving direct photon
emission component KL -> pi+ pi- gamma, we obtain the results BR(KL -> pi+ pi-)
= (1.941 +- 0.019) x 10^-3 and |eta+-| = (2.223 +- 0.012) x 10^-3.Comment: 20 pages, 7 figures, accepted by Phys. Lett.
Observation of the rare decay K_S -> pi^0mu^+mu^-
A search for the decay K_S -> pi^0mu^+mu^- has been made by the NA48/1
Collaboration at the CERN SPS accelerator. The data were collected during 2002
with a high-intensity K_S beam. Six events were found with a background
expectation of 0.22^+0.18_-0.11 event. Using a vector matrix element and unit
form factor, the measured branching ratio is B(K_S ->
pi^0mu^+mu^-)=[2.9^+1.5_-1.2(stat)+/-0.2(syst)]x10^{-9}.Comment: 19 pages, 8 figures, 4 tables. To be published in Physics Letters
Measurement of the branching ratios of the decays Xi0 --> Sigma+ e- nubar and anti-Xi0 --> anti-Sigma+ e+ nu
From 56 days of data taking in 2002, the NA48/1 experiment observed 6316 Xi0
--> Sigma+ e- nubar candidates (with the subsequent Sigma+ --> p pi0 decay) and
555 anti-Xi0 --> anti-Sigma+ e+ nu candidates with background contamination of
215+-44 and 136+-8 events, respectively. From these samples, the branching
ratios BR(Xi0 --> Sigma+ e- nubar)= (2.51+-0.03stat+-0.09syst)E(-4) and
BR(anti-Xi0 --> anti-Sigma+ e+ nu)= (2.55+-0.14stat+-0.10syst)E(-4) were
measured allowing the determination of the CKM matrix element |Vus| =
0.209+0.023-0.028. Using the Particle Data Group average for |Vus| obtained in
semileptonic kaon decays, we measured the ratio g1/f1 = 1.20+-0.05 of the
axial-vector to vector form factors.Comment: 16 pages, 11 figures Submitted to Phys.Lett.
- …