9 research outputs found

    Chronic bilateral renal denervation attenuates renal injury in a transgenic rat model of diabetic nephropathy

    No full text
    Bilateral renal denervation (BRD) has been shown to reduce hypertension and improve renal function in both human and experimental studies. We hypothesized that chronic intervention with BRD may also attenuate renal injury and fibrosis in diabetic nephropathy. This hypothesis was examined in a female streptozotocin-induced diabetic (mRen-2)27 rat (TGR) shown to capture the cardinal features of human diabetic nephropathy. Following diabetic induction, BRD/sham surgeries were conducted repeatedly (at the week 3, 6, and 9 following induction) in both diabetic and normoglycemic animals. Renal denervation resulted in a progressive decrease in systolic blood pressure from first denervation to termination (at 12 wk post-diabetic induction) in both normoglycemic and diabetic rats. Renal norepinephrine content was significantly raised following diabetic induction and ablated in denervated normoglycemic and diabetic groups. A significant increase in glomerular basement membrane thickening and mesangial expansion was seen in the diabetic kidneys; this morphological appearance was markedly reduced by BRD. Immunohistochemistry and protein densitometric analysis of diabetic innervated kidneys confirmed the presence of significantly increased levels of collagens I and IV, α-smooth muscle actin, the ANG II type 1 receptor, and transforming growth factor-ÎČ. Renal denervation significantly reduced protein expression of these fibrotic markers. Furthermore, BRD attenuated albuminuria and prevented the loss of glomerular podocin expression in these diabetic animals. In conclusion, BRD decreases systolic blood pressure and reduces the development of renal fibrosis, glomerulosclerosis, and albuminuria in this model of diabetic nephropathy. The evidence presented strongly suggests that renal denervation may serve as a therapeutic intervention to attenuate the progression of renal injury in diabetic nephropathy.12 page(s

    Counter-rotating structures over a delta wing

    No full text

    Rapid onset of cardiomyopathy in STZ-induced female diabetic mice involves the downregulation of pro-survival Pim-1

    Get PDF
    BACKGROUND: Diabetic women are five times more likely to develop congestive heart failure compared with two fold for men. The underlying mechanism for this gender difference is not known. Here we investigate the molecular mechanisms responsible for this female disadvantage and attempt safeguarding cardiomyocytes viability and function through restoration of pro-survival Pim-1. METHODS AND RESULTS: Diabetes was induced by injection of streptozotocin in CD1 mice of both genders. Functional and dimensional parameters measurement using echocardiography revealed diastolic dysfunction in female diabetic mice within 8 weeks after STZ-induced diabetes. This was associated with significant downregulation of pro-survival Pim-1 and upregulation of pro-apoptotic Caspase-3, microRNA-1 and microRNA-208a. Male diabetic mice did not show any significant changes at this time point (P < 0.05 vs. female diabetic). Further, the onset of ventricular remodelling was quicker in female diabetic mice showing marked left ventricular dilation, reduced ejection fraction and poor contractility (P < 0.05 vs. male diabetic at 12 and 16 weeks of STZ-induced diabetes). Molecular analysis of samples from human diabetic hearts confirmed the results of pre-clinical studies, showing marked downregulation of Pim-1 in the female diabetic heart (P < 0.05 vs. male diabetic). Finally, in vitro restoration of Pim-1 reversed the female disadvantage in diabetic cardiomyocytes. CONCLUSIONS: We provide novel insights into the molecular mechanisms behind the rapid onset of cardiomyopathy in female diabetics. These results suggest the requirement for the development of gender-specific treatments for diabetic cardiomyopathy

    Molecular mechanism of diabetic cardiomyopathy and modulation of microRNA function by synthetic oligonucleotides

    No full text
    corecore