43,709 research outputs found

    Programmable biomaterials for dynamic and responsive drug delivery

    Get PDF
    Biomaterials are continually being designed that enable new methods for interacting dynamically with cell and tissues, in turn unlocking new capabilities in areas ranging from drug delivery to regenerative medicine. In this review, we explore some of the recent advances being made in regards to programming biomaterials for improved drug delivery, with a focus on cancer and infection. We begin by explaining several of the underlying concepts that are being used to design this new wave of drug delivery vehicles, followed by examining recent materials systems that are able to coordinate the temporal delivery of multiple therapeutics, dynamically respond to changing tissue environments, and reprogram their bioactivity over time

    Generalizations of Ripley's K-function with Application to Space Curves

    Full text link
    The intensity function and Ripley's K-function have been used extensively in the literature to describe the first and second moment structure of spatial point sets. This has many applications including describing the statistical structure of synaptic vesicles. Some attempts have been made to extend Ripley's K-function to curve pieces. Such an extension can be used to describe the statistical structure of muscle fibers and brain fiber tracks. In this paper, we take a computational perspective and construct new and very general variants of Ripley's K-function for curves pieces, surface patches etc. We discuss the method from [Chiu, Stoyan, Kendall, & Mecke 2013] and compare it with our generalizations theoretically, and we give examples demonstrating the difference in their ability to separate sets of curve pieces.Comment: 9 pages & 8 figure

    On the logarithmic probability that a random integral ideal is A\mathscr A-free

    Full text link
    This extends a theorem of Davenport and Erd\"os on sequences of rational integers to sequences of integral ideals in arbitrary number fields KK. More precisely, we introduce a logarithmic density for sets of integral ideals in KK and provide a formula for the logarithmic density of the set of so-called A\mathscr A-free ideals, i.e. integral ideals that are not multiples of any ideal from a fixed set A\mathscr A.Comment: 9 pages, to appear in S. Ferenczi, J. Ku{\l}aga-Przymus and M. Lema\'nczyk (eds.), Chowla's conjecture: from the Liouville function to the M\"obius function, Lecture Notes in Math., Springe

    Likelihood informed dimension reduction for inverse problems in remote sensing of atmospheric constituent profiles

    Full text link
    We use likelihood informed dimension reduction (LIS) (T. Cui et al. 2014) for inverting vertical profile information of atmospheric methane from ground based Fourier transform infrared (FTIR) measurements at Sodankyl\"a, Northern Finland. The measurements belong to the word wide TCCON network for greenhouse gas measurements and, in addition to providing accurate greenhouse gas measurements, they are important for validating satellite observations. LIS allows construction of an efficient Markov chain Monte Carlo sampling algorithm that explores only a reduced dimensional space but still produces a good approximation of the original full dimensional Bayesian posterior distribution. This in effect makes the statistical estimation problem independent of the discretization of the inverse problem. In addition, we compare LIS to a dimension reduction method based on prior covariance matrix truncation used earlier (S. Tukiainen et al. 2016)

    Observation of a topologically non-trivial surface state in half-Heusler PtLuSb (001) thin films.

    Get PDF
    The discovery of topological insulators, materials with bulk band gaps and protected cross-gap surface states in compounds such as Bi2Se3, has generated much interest in identifying topological surface states (TSSs) in other classes of materials. In particular, recent theoretical calculations suggest that TSSs may be found in half-Heusler ternary compounds. If experimentally realizable, this would provide a materials platform for entirely new heterostructure spintronic devices that make use of the structurally identical but electronically varied nature of Heusler compounds. Here we show the presence of a TSS in epitaxially grown thin films of the half-Heusler compound PtLuSb. Spin- and angle-resolved photoemission spectroscopy, complemented by theoretical calculations, reveals a surface state with linear dispersion and a helical tangential spin texture consistent with previous predictions. This experimental verification of topological behaviour is a significant step forward in establishing half-Heusler compounds as a viable material system for future spintronic devices

    An adaptive prefix-assignment technique for symmetry reduction

    Full text link
    This paper presents a technique for symmetry reduction that adaptively assigns a prefix of variables in a system of constraints so that the generated prefix-assignments are pairwise nonisomorphic under the action of the symmetry group of the system. The technique is based on McKay's canonical extension framework [J.~Algorithms 26 (1998), no.~2, 306--324]. Among key features of the technique are (i) adaptability---the prefix sequence can be user-prescribed and truncated for compatibility with the group of symmetries; (ii) parallelizability---prefix-assignments can be processed in parallel independently of each other; (iii) versatility---the method is applicable whenever the group of symmetries can be concisely represented as the automorphism group of a vertex-colored graph; and (iv) implementability---the method can be implemented relying on a canonical labeling map for vertex-colored graphs as the only nontrivial subroutine. To demonstrate the practical applicability of our technique, we have prepared an experimental open-source implementation of the technique and carry out a set of experiments that demonstrate ability to reduce symmetry on hard instances. Furthermore, we demonstrate that the implementation effectively parallelizes to compute clusters with multiple nodes via a message-passing interface.Comment: Updated manuscript submitted for revie

    Redesigning the 'choice architecture' of hospital prescription charts: a mixed methods study incorporating in situ simulation testing.

    Get PDF
    Objectives: To incorporate behavioural insights into the user-centred design of an inpatient prescription chart (Imperial Drug Chart Evaluation and Adoption Study, IDEAS chart) and to determine whether changes in the content and design of prescription charts could influence prescribing behaviour and reduce prescribing errors. Design: A mixed-methods approach was taken in the development phase of the project; in situ simulation was used to evaluate the effectiveness of the newly developed IDEAS prescription chart. Setting: A London teaching hospital. Interventions/methods: A multimodal approach comprising (1) an exploratory phase consisting of chart reviews, focus groups and user insight gathering (2) the iterative design of the IDEAS prescription chart and finally (3) testing of final chart with prescribers using in situ simulation. Results: Substantial variation was seen between existing inpatient prescription charts used across 15 different UK hospitals. Review of 40 completed prescription charts from one hospital demonstrated a number of frequent prescribing errors including illegibility, and difficulty in identifying prescribers. Insights from focus groups and direct observations were translated into the design of IDEAS chart. In situ simulation testing revealed significant improvements in prescribing on the IDEAS chart compared with the prescription chart currently in use in the study hospital. Medication orders on the IDEAS chart were significantly more likely to include correct dose entries (164/164 vs 166/174; p=0.0046) as well as prescriber's printed name (163/164 vs 0/174; p<0.0001) and contact number (137/164 vs 55/174; p<0.0001). Antiinfective indication (28/28 vs 17/29; p<0.0001) and duration (26/28 vs 15/29; p<0.0001) were more likely to be completed using the IDEAS chart. Conclusions: In a simulated context, the IDEAS prescription chart significantly reduced a number of common prescribing errors including dosing errors and illegibility. Positive behavioural change was seen without prior education or support, suggesting that some common prescription writing errors are potentially rectifiable simply through changes in the content and design of prescription charts

    User evaluation of an interactive learning framework for single-arm and dual-arm robots

    Get PDF
    The final publication is available at link.springer.comSocial robots are expected to adapt to their users and, like their human counterparts, learn from the interaction. In our previous work, we proposed an interactive learning framework that enables a user to intervene and modify a segment of the robot arm trajectory. The framework uses gesture teleoperation and reinforcement learning to learn new motions. In the current work, we compared the user experience with the proposed framework implemented on the single-arm and dual-arm Barrett’s 7-DOF WAM robots equipped with a Microsoft Kinect camera for user tracking and gesture recognition. User performance and workload were measured in a series of trials with two groups of 6 participants using two robot settings in different order for counterbalancing. The experimental results showed that, for the same task, users required less time and produced shorter robot trajectories with the single-arm robot than with the dual-arm robot. The results also showed that the users who performed the task with the single-arm robot first experienced considerably less workload in performing the task with the dual-arm robot while achieving a higher task success rate in a shorter time.Peer ReviewedPostprint (author's final draft

    Feature engineering workflow for activity recognition from synchronized inertial measurement units

    Full text link
    The ubiquitous availability of wearable sensors is responsible for driving the Internet-of-Things but is also making an impact on sport sciences and precision medicine. While human activity recognition from smartphone data or other types of inertial measurement units (IMU) has evolved to one of the most prominent daily life examples of machine learning, the underlying process of time-series feature engineering still seems to be time-consuming. This lengthy process inhibits the development of IMU-based machine learning applications in sport science and precision medicine. This contribution discusses a feature engineering workflow, which automates the extraction of time-series feature on based on the FRESH algorithm (FeatuRe Extraction based on Scalable Hypothesis tests) to identify statistically significant features from synchronized IMU sensors (IMeasureU Ltd, NZ). The feature engineering workflow has five main steps: time-series engineering, automated time-series feature extraction, optimized feature extraction, fitting of a specialized classifier, and deployment of optimized machine learning pipeline. The workflow is discussed for the case of a user-specific running-walking classification, and the generalization to a multi-user multi-activity classification is demonstrated.Comment: Multi-Sensor for Action and Gesture Recognition (MAGR), ACPR 2019 Workshop, Auckland, New Zealan
    corecore