18,266 research outputs found

    Hot electrons in low-dimensional phonon systems

    Full text link
    A simple bulk model of electron-phonon coupling in metals has been surprisingly successful in explaining experiments on metal films that actually involve surface- or other low-dimensional phonons. However, by an exact application of this standard model to a semi-infinite substrate with a free surface, making use of the actual vibrational modes of the substrate, we show that such agreement is fortuitous, and that the model actually predicts a low-temperature crossover from the familiar T^5 temperature dependence to a stronger T^6 log T scaling. Comparison with existing experiments suggests a widespread breakdown of the standard model of electron-phonon thermalization in metals

    The Dynamics of Sustained Reentry in a Loop Model with Discrete Gap Junction Resistance

    Full text link
    Dynamics of reentry are studied in a one dimensional loop of model cardiac cells with discrete intercellular gap junction resistance (RR). Each cell is represented by a continuous cable with ionic current given by a modified Beeler-Reuter formulation. For RR below a limiting value, propagation is found to change from period-1 to quasi-periodic (QPQP) at a critical loop length (LcritL_{crit}) that decreases with RR. Quasi-periodic reentry exists from LcritL_{crit} to a minimum length (LminL_{min}) that is also shortening with RR. The decrease of Lcrit(R)L_{crit}(R) is not a simple scaling, but the bifurcation can still be predicted from the slope of the restitution curve giving the duration of the action potential as a function of the diastolic interval. However, the shape of the restitution curve changes with RR.Comment: 6 pages, 7 figure

    Comparison of soil properties measurements in pipeline corrosion estimation

    Get PDF
    Soil corrosion is a hazardous electrochemical process that affects buried metals in contact with soil. Corrosion in soils resembles atmospheric corrosion with corrosion rates usually higher and depending on the soil type. There are numerous properties of soil and thus soils can be classified in many different ways. Soil resistivity is one of the main indicators of soil corrosivity and thus of the hazardous impact the soil has on metal materials in soil environment, although it is not the only parameter affecting the risk of corrosion damage. In this work on-site measurements and laboratory measurements of soil characteristics are performed and compared. On- site measurements include measuring the redox potential and soil resistivity by Wenner 4-pin method, while the measurements in laboratory include measuring soil conductivity, as well as moisture content, pH, content of sulphates, chlorides and sulfides and polarization measurements, which give the most accurate results. The measurements have shown that if the Wenner 4- pin method is performed in a convenient way the obtained results are not precise but can give an indicative picture of the corrosivity of the observed soil

    The Additional Line Component within the Iron K\alpha Profile in MCG-6-30-15: Evidence for Blob Ejection?

    Full text link
    The EPIC data of MCG -6-30-15 observed by XMM-Newton were analyzed for the complexities of the iron K-alpha line. Here we report that the additional line component (ALC) at 6.9 keV undoubtedly appears within the broad iron Kalpha; line profile at the high state, whereas it disappears at the low state. These state-dependent behaviors exclude several possible origins and suggest an origin of the ALC in matter being ejected from the vicinity of the black hole. At the low state, the newborn blob ejected from the accretion disk is so Thomson-thick that hard X-rays are blocked from ionizing the old blobs, leading to the disappearance of the ALC. When the blob becomes Thomson-thin as a result of expansion, the hard X-ray will penetrate it and ionize the old ones, emitting the ALC at the high state. The blob ejection is the key to switching the ALC on or off.Comment: 6 pages, 4 Figure

    Self Assembled II-VI Magnetic Quantum Dot as a Voltage-Controlled Spin-Filter

    Full text link
    A key element in the emergence of a full spintronics technology is the development of voltage controlled spin filters to selectively inject carriers of desired spin into semiconductors. We previously demonstrated a prototype of such a device using a II-VI dilute-magnetic semiconductor quantum well which, however, still required an external magnetic field to generate the level splitting. Recent theory suggests that spin selection may be achievable in II-VI paramagnetic semiconductors without external magnetic field through local carrier mediated ferromagnetic interactions. We present the first experimental observation of such an effect using non-magnetic CdSe self-assembled quantum dots in a paramagnetic (Zn,Be,Mn)Se barrier.Comment: 4 pages, 4 figure

    Mesoscopic Electron and Phonon Transport through a Curved Wire

    Full text link
    There is great interest in the development of novel nanomachines that use charge, spin, or energy transport, to enable new sensors with unprecedented measurement capabilities. Electrical and thermal transport in these mesoscopic systems typically involves wave propagation through a nanoscale geometry such as a quantum wire. In this paper we present a general theoretical technique to describe wave propagation through a curved wire of uniform cross-section and lying in a plane, but of otherwise arbitrary shape. The method consists of (i) introducing a local orthogonal coordinate system, the arclength and two locally perpendicular coordinate axes, dictated by the shape of the wire; (ii) rewriting the wave equation of interest in this system; (iii) identifying an effective scattering potential caused by the local curvature; and (iv), solving the associated Lippmann-Schwinger equation for the scattering matrix. We carry out this procedure in detail for the scalar Helmholtz equation with both hard-wall and stress-free boundary conditions, appropriate for the mesoscopic transport of electrons and (scalar) phonons. A novel aspect of the phonon case is that the reflection probability always vanishes in the long-wavelength limit, allowing a simple perturbative (Born approximation) treatment at low energies. Our results show that, in contrast to charge transport, curvature only barely suppresses thermal transport, even for sharply bent wires, at least within the two-dimensional scalar phonon model considered. Applications to experiments are also discussed.Comment: 9 pages, 11 figures, RevTe

    Optimal Principal Component Analysis in Distributed and Streaming Models

    Full text link
    We study the Principal Component Analysis (PCA) problem in the distributed and streaming models of computation. Given a matrix ARm×n,A \in R^{m \times n}, a rank parameter k<rank(A)k < rank(A), and an accuracy parameter 0<ϵ<10 < \epsilon < 1, we want to output an m×km \times k orthonormal matrix UU for which AUUTAF2(1+ϵ)AAkF2, || A - U U^T A ||_F^2 \le \left(1 + \epsilon \right) \cdot || A - A_k||_F^2, where AkRm×nA_k \in R^{m \times n} is the best rank-kk approximation to AA. This paper provides improved algorithms for distributed PCA and streaming PCA.Comment: STOC2016 full versio

    Evolution of Hard X-Ray Spectra Along the Branches in Cir X-1

    Full text link
    Using the data from the PCA and HEXTE on board the RXTE satellite, we investigate the evolution of the 3-200 keV spectra of the peculiar low mass X-ray binary (LMXB) Cir X-1 along the branches on its hardness-intensity diagram (HID) from the vertical horizontal branch (VHB), through the horizontal horizontal branch (HHB) and normal branch (NB), to the flaring branch (FB). We detect a power-law hard component in the spectra. It is found that the derived photon indices (Γ\Gamma) of the power-law hard component are correlated with the position on the HID. The power-law component dominates the X-ray emission of Cir X-1 in the energy band higher than 20\sim 20 keV. The fluxes of the power-law component are compared with those of the bremsstrahlung component in the spectra. A possible origin of the power-law hard component is discussed.Comment: 14 pages, 5 figures, ApJ Letter accepte

    Genetic Pathways to Environmentally Friendly Pigs

    Get PDF
    The Environmental Protection Agency (EPA) has enacted regulations that will restrict the amount of phosphorus (P) that can be applied to land. With the vast majority of swine production sites operating at high stocking densities and having less available land on which to apply animal effluent, increased P levels in manure could substantially increase production costs
    corecore