5 research outputs found

    Preparation of the catalyst support from the oil-shale processing by-product

    Get PDF
    5-methylresorcinol and the technical mixture of oil-shale phenolic compounds were applied for carbon aerogel preparation. Gels, which were prepared via base catalyzed polymerization were dried under supercritical conditions and subsequent pyrolysis of obtained dry aerogels led to carbon aerogels. Activation of carbon aerogel with CO2 and H2O was performed and porosity and the specific surface area of activated carbon aerogels were studied. Langmuir specific surface areas of well over 2000 m2/g were achieved and microporosity of carbon aerogel samples was tuneable ranging from below 50% until over 85%. Impregnation with the complex [Pd(C4HF6O)2] was carried out in supercritical CO2 using H2 for a quick reduction of Pd(II) to Pd(0). Eventually, highly porous material decorated with nanoparticles of black palladium was obtained having a homogeneous metal distribution

    Mechanical and electro-mechanical properties of EAP actuators with inkjet printed electrodes

    No full text
    Electrically conductive polymer (CP) based ionic electromechanically active polymer composites (IEAP-s) are attractive as bending and linear actuators in compliant and miniature devices due to low operating voltage. Ink-jet printing is a promising technology for fabrication of microscale CP-based IEAP-s with customized shapes and geometries. The current study investigates tailoring of the mechanical and electromechanical properties of the actuators by controlled growth of ink-jet printed poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) based electrodes on commercial poly(vinylidene fluoride) (PVdF) membranes. In parallel with PEDOT:PSS, hybrid actuators with ink-jet printed PEDOT:PSS and activated carbon aerogel electrodes were investigated. Cumulative growth of electrodes with each deposited layer was achieved in the case of both electrode materials. The strain, blocking force and capacitance of the actuators were in linear correlation with the thickness of the electrodes. Simple method of control encourages implementation of ink-jet-printing technology for manufacturing of IEAP micro-actuators with desired mechanical and electromechanical properties
    corecore