50,793 research outputs found

    Chiral-Odd and Spin-Dependent Quark Fragmentation Functions and their Applications

    Full text link
    We define a number of quark fragmentation functions for spin-0, -1/2 and -1 hadrons, and classify them according to their twist, spin and chirality. As an example of their applications, we use them to analyze semi-inclusive deep-inelastic scattering on a transversely polarized nucleon.Comment: 19 pages in Plain TeX, MIT CTP #221

    Quark Orbital-Angular-Momentum Distribution in the Nucleon

    Get PDF
    We introduce gauge-invariant quark and gluon angular momentum distributions after making a generalization of the angular momentum density operators. From the quark angular momentum distribution, we define the gauge-invariant and leading-twist quark {\it orbital} angular momentum distribution Lq(x)L_q(x). The latter can be extracted from data on the polarized and unpolarized quark distributions and the off-forward distribution E(x)E(x) in the forward limit. We comment upon the evolution equations obeyed by this as well as other orbital distributions considered in the literature.Comment: 8 pages, latex, no figures, minor corrections mad

    Viewing the Proton Through "Color"-Filters

    Full text link
    While the form factors and parton distributions provide separately the shape of the proton in coordinate and momentum spaces, a more powerful imaging of the proton structure can be obtained through phase-space distributions. Here we introduce the Wigner-type quark and gluon distributions which depict a full-3D proton at every fixed light-cone momentum, like what seen through momentum("color")-filters. After appropriate phase-space reductions, the Wigner distributions are related to the generalized parton distributions (GPD's) and transverse-momentum dependent parton distributions which are measurable in high-energy experiments. The new interpretation of GPD's provides a classical way to visualize the orbital motion of the quarks which is known to be the key to the spin and magnetic moment of the proton.Comment: 4 page

    Effect of nickel on the microstructure and mechanical property of die-cast Al–Mg–Si–Mn alloy

    Get PDF
    The effect of nickel on the microstructure and mechanical properties of a die-cast Al–Mg–Si–Mn alloy has been investigated. The results show that the presence of Ni in the alloy promotes the formation of Ni-rich intermetallics. These occur consistently during solidification in the die-cast Al–Mg–Si–Mn alloy across different levels of Ni content. The Ni-rich intermetallics exhibit dendritic morphology during the primary solidification and lamellar morphology during the eutectic solidification stage. Ni was found to be always associated with iron forming AlFeMnSiNi intermetallics, and no Al3Ni intermetallic was observed when Ni concentrations were up to 2.06 wt% in the alloy. Although with different morphologies, the Ni-rich intermetallics were identified as the same AlFeMnSiNi phase bearing a typical composition of Al[100–140](Fe,Mn)[2–7]SiNi[4–9]. With increasing Ni content, the spacing of the α-Al–Mg2Si eutectic phase was enlarged in the Al–Mg–Si–Mn alloy. The addition of Ni to the alloy resulted in a slight increase in the yield strength, but a significant decrease in the elongation. The ultimate tensile strength (UTS) increased slightly from 300 to 320 MPa when a small amount (e.g. 0.16 wt%) of Ni was added to the alloy, but further increase of the Ni content resulted in a decrease of the UTS.The Engineering and Physical Sciences Research Council (EPSRC), Technology Strategy Board (TSB) and Jaguar Land Rover (JLR) in the United Kingdom

    Electronic transport in a Cantor stub waveguide network

    Full text link
    We investigate theoretically, the character of electronic eigenstates and transmission properties of a one dimensional array of stubs with Cantor geometry. Within the framework of real space re-normalization group (RSRG) and transfer matrix methods we analyze the resonant transmission and extended wave-functions in a Cantor array of stubs, which lack translational order. Apart from resonant states with high transmittance we unravel a whole family of wave-functions supported by such an array clamped between two-infinite ordered leads, which have an extended character in the RSRG scheme, but, for such states the transmission coefficient across the lead-sample-lead structure decays following a power-law as the system grows in size. This feature is explained from renormalization group ideas and may lead to the possibility of trapping of electronic, optical or acoustic waves in such hierarchical geometries

    Neural network determination of the non-singlet quark distribution

    Full text link
    We summarize the main features of our approach to parton fitting, and we show a preliminary result for the non-singlet structure function. When comparing our result to other PDF sets, we find a better description of large x data and larger error bands in the extrapolation regions.Comment: 4 pages, 1 eps figure. Presented at the XIV International Workshop on Deep Inelastic Scattering (DIS2006), Tsukuba, Japan, 20-24 April 200

    Helicity-Flip Off-Foward Parton Distributions of the Nucleon

    Get PDF
    We identify quark and gluon helicity-flip distributions defined between nucleon states of unequal momenta. The evolution of these distributions with change of renormalization scale is calculated in the leading-logarithmic approximation. The helicity-flip gluon distributions do not mix with any quark distribution and are thus a unique signature of gluons in the nucleon. Their contribution to the generalized virtual Compton process is obtained both in the form of a factorization theorem and an operator product expansion. In deeply virtual Compton scattering, they can be probed through distinct angular dependence of the cross section.Comment: a few corrections made, references change

    Implications of Color Gauge Symmetry For Nucleon Spin Structure

    Get PDF
    We study the chromodynamical gauge symmetry in relation to the internal spin structure of the nucleon. We show that 1) even in the helicity eigenstates the gauge-dependent spin and orbital angular momentum operators do not have gauge-independent matrix element; 2) the evolution equations for the gluon spin take very different forms in the Feynman and axial gauges, but yield the same leading behavior in the asymptotic limit; 3) the complete evolution of the gauge-dependent orbital angular momenta appears intractable in the light-cone gauge. We define a new gluon orbital angular momentum distribution Lg(x)L_g(x) which {\it is} an experimental observable and has a simple scale evolution. However, its physical interpretation makes sense only in the light-cone gauge just like the gluon helicity distribution Δg(x)\Delta g(x)y.Comment: Minor corrections are made in the tex

    Glueball Spin

    Get PDF
    The spin of a glueball is usually taken as coming from the spin (and possibly the orbital angular momentum) of its constituent gluons. In light of the difficulties in accounting for the spin of the proton from its constituent quarks, the spin of glueballs is reexamined. The starting point is the fundamental QCD field angular momentum operator written in terms of the chromoelectric and chromomagnetic fields. First, we look at the restrictions placed on the structure of glueballs from the requirement that the QCD field angular momentum operator should satisfy the standard commutation relationships. This can be compared to the electromagnetic charge/monopole system, where the quantization of the field angular momentum places restrictions (i.e. the Dirac condition) on the system. Second, we look at the expectation value of this operator under some simplifying assumptions.Comment: 11 pages, 0 figures; added references and some discussio

    Comments on Exclusive Electroproduction of Transversely Polarized Vector Mesons

    Get PDF
    We discuss the electroproduction of light vector mesons from transversely polarized photons. Here QCD factorization cannot be applied as shown explicitly in a leading order calculation of corresponding Feynman diagrams. It is emphasized that present infrared singular contributions cannot be regularized through phenomenological meson distribution amplitudes with suppressed endpoint configurations. We point out that infrared divergencies arise also from integrals over skewed parton distributions of the nucleons. In a phenomenological analysis of transverse vector meson production model dependent regularizations have to be applied. If this procedure preserves the analytic structure suggested by a leading order calculation of Feynman diagrams, one obtains contributions from nucleon parton distributions and their derivatives. In particular polarized gluons enter only through their derivative
    • …
    corecore