1,643 research outputs found
Phase diagram of Eu magnetic ordering in Sn-flux-grown Eu(FeCo)As single crystals
The magnetic ground state of the Eu moments in a series of
Eu(FeCo)As single crystals grown from the Sn flux has
been investigated in detail by neutron diffraction measurements. Combined with
the results from the macroscopic properties (resistivity, magnetic
susceptibility and specific heat) measurements, a phase diagram describing how
the Eu magnetic order evolves with Co doping in
Eu(FeCo)As is established. The ground-state magnetic
structure of the Eu spins is found to develop from the A-type
antiferromagnetic (AFM) order in the parent compound, via the A-type canted AFM
structure with some net ferromagnetic (FM) moment component along the
crystallographic direction at intermediate Co doping levels,
finally to the pure FM order at relatively high Co doping levels. The ordering
temperature of Eu declines linearly at first, reaches the minimum value of
16.5(2) K around = 0.100(4), and then reverses upwards with
further Co doping. The doping-induced modification of the indirect
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between the Eu moments,
which is mediated by the conduction electrons on the (Fe,Co)As
layers, as well as the change of the strength of the direct interaction between
the Eu and Fe moments, might be responsible for the change of the
magnetic ground state and the ordering temperature of the Eu sublattice. In
addition, for Eu(FeCo)As single crystals with 0.10
0.18, strong ferromagnetism from the Eu
sublattice is well developed in the superconducting state, where a spontaneous
vortex state is expected to account for the compromise between the two
competing phenomena.Comment: 10 pages, 9 figure
Centrality dependence of spectra for identified hadrons in Au+Au and Cu+Cu collisions at GeV
The centrality dependence of transverse momentum spectra for identified
hadrons at midrapidity in Au+Au collisions at GeV is
systematically studied in a quark combination model. The
spectra of , , and in
different centrality bins and the nuclear modification factors () for
these hadrons are calculated. The centrality dependence of the average
collective transverse velocity for the hot and dense quark matter
is obtained in Au+Au collisions, and it is applied to a relative smaller Cu+Cu
collision system. The centrality dependence of spectra and
the for , and in Cu+Cu collisions at
GeV are well described. The results show that is only a function of the number of participants and it is
independent of the collision system.Comment: 7 pages, 6 figure
TCP and MADS-Box Transcription Factor Networks Regulate Heteromorphic Flower Type Identity in Gerbera hybrida
The large sunflower family, Asteraceae, is characterized by compressed, flower-like inflorescences that may bear phenotypically distinct flower types. The CYCLOIDEA (CYC)/TEOSINTE BRANCHED1-like transcription factors (TFs) belonging to the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) protein family are known to regulate bilateral symmetry in single flowers. In Asteraceae, they function at the inflorescence level, and were recruited to define differential flower type identities. Here, we identified upstream regulators of GhCYC3, a gene that specifies ray flower identity at the flower head margin in the model plant Gerbera hybrida. We discovered a previously unidentified expression domain and functional role for the paralogous CINCINNATA-like TCP proteins. They function upstream of GhCYC3 and affect the developmental delay of marginal ray primordia during their early ontogeny. At the level of single flowers, the Asteraceae CYC genes show a unique function in regulating the elongation of showy ventral ligules that play a major role in pollinator attraction. We discovered that during ligule development, the E class MADS-box TF GRCD5 activates GhCYC3 expression. We propose that the C class MADS-box TF GAGA1 contributes to stamen development upstream of GhCYC3. Our data demonstrate how interactions among and between the conserved floral regulators, TCP and MADS-box TFs, contribute to the evolution of the elaborate inflorescence architecture of Asteraceae.Peer reviewe
A novel procedure for precise quantification of Schistosoma japonicum eggs in bovine feces
Schistosomiasis japonica is a zoonosis with a number of mammalian species acting as reservoir hosts, including water buffaloes which can contribute up to 75% to human transmission in the People's Republic of China. Determining prevalence and intensity of Schistosoma japonicum in mammalian hosts is important for calculating transmission rates and determining environmental contamination. A new procedure, the formalin-ethyl acetate sedimentation-digestion (FEA-SD) technique, for increased visualization of S. japonicum eggs in bovine feces, is described that is an effective technique for identifying and quantifying S. japonicum eggs in fecal samples from naturally infected Chinese water buffaloes and from carabao (water buffalo) in the Philippines. The procedure involves filtration, sedimentation, potassium hydroxide digestion and centrifugation steps prior to microscopy. Bulk debris, including the dense cellulosic material present in bovine feces, often obscures schistosome eggs with the result that prevalence and infection intensity based on direct visualization cannot be made accurately. This technique removes nearly 70% of debris from the fecal samples and renders the remaining debris translucent. It allows improved microscopic visualization of S. japonicum eggs and provides an accurate quantitative method for the estimation of infection in bovines and other ruminant reservoir hosts. We show that the FEA-SD technique could be of considerable value if applied as a surveillance tool for animal reservoirs of S. japonicum, particularly in areas with low to high infection intensity, or where, following control efforts, there is suspected elimination of schistosomiasis japonica.This work was partially supported by the following grants: The National High Technology Research and Development Program of China (grant
No. 2007AA02Z153), and National Science and Technology Major Program (grant Nos. 2009ZX10004-302, 2008ZX10004-011)
Evidence of silicene in honeycomb structures of silicon on Ag(111)
In the search for evidence of silicene, a two-dimensional honeycomb lattice
of silicon, it is important to obtain a complete picture for the evolution of
Si structures on Ag(111), which is believed to be the most suitable substrate
for growth of silicene so far. In this work we report the finding and evolution
of several monolayer superstructures of silicon on Ag(111) depending on the
coverage and temperature. Combined with first-principles calculations, the
detailed structures of these phases have been illuminated. These structure were
found to share common building blocks of silicon rings, and they evolve from a
fragment of silicene to a complete monolayer silicene and multilayer silicene.
Our results elucidate how silicene formes on Ag(111) surface and provide
methods to synthesize high-quality and large-scale silicene.Comment: 6 pages, 4 figure
In-situ nanospectroscopic imaging of plasmon-induced two-dimensional [4+4]-cycloaddition polymerization on Au(111)
From Springer Nature via Jisc Publications RouterHistory: received 2021-01-14, accepted 2021-06-16, registration 2021-07-13, pub-electronic 2021-07-27, online 2021-07-27, collection 2021-12Publication status: PublishedFunder: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council); doi: https://doi.org/10.13039/100010663; Grant(s): 741431-2DNanoSpecFunder: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation); doi: https://doi.org/10.13039/501100001711; Grant(s): URPP-LightChECFunder: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020); doi: https://doi.org/10.13039/100010661; Grant(s): 841653-2DvdWHsFunder: the Swiss National Supercomputing Centre (CSCS) under Project ID uzh1 and s965Abstract: Plasmon-induced chemical reactions (PICRs) have recently become promising approaches for highly efficient light-chemical energy conversion. However, an in-depth understanding of their mechanisms at the nanoscale still remains challenging. Here, we present an in-situ investigation by tip-enhanced Raman spectroscopy (TERS) imaging of the plasmon-induced [4+4]-cycloaddition polymerization within anthracene-based monomer monolayers physisorbed on Au(111), and complement the experimental results with density functional theory (DFT) calculations. This two-dimensional (2D) polymerization can be flexibly triggered and manipulated by the hot carriers, and be monitored simultaneously by TERS in real time and space. TERS imaging provides direct evidence for covalent bond formation with ca. 3.7 nm spatial resolution under ambient conditions. Combined with DFT calculations, the TERS results demonstrate that the lateral polymerization on Au(111) occurs by a hot electron tunneling mechanism, and crosslinks form via a self-stimulating growth mechanism. We show that TERS is promising to be plasmon-induced nanolithography for organic 2D materials
The CORSMAL benchmark for the prediction of the properties of containers
13 pages, 6 tables, 7 figures, Pre-print submitted to IEEE AccessAuthors' post-print accepted for publication in IEEE Access, see https://doi.org/10.1109/ACCESS.2022.3166906 . 14 pages, 6 tables, 7 figuresThe contactless estimation of the weight of a container and the amount of its content manipulated by a person are key pre-requisites for safe human-to-robot handovers. However, opaqueness and transparencies of the container and the content, and variability of materials, shapes, and sizes, make this estimation difficult. In this paper, we present a range of methods and an open framework to benchmark acoustic and visual perception for the estimation of the capacity of a container, and the type, mass, and amount of its content. The framework includes a dataset, specific tasks and performance measures. We conduct an in-depth comparative analysis of methods that used this framework and audio-only or vision-only baselines designed from related works. Based on this analysis, we can conclude that audio-only and audio-visual classifiers are suitable for the estimation of the type and amount of the content using different types of convolutional neural networks, combined with either recurrent neural networks or a majority voting strategy, whereas computer vision methods are suitable to determine the capacity of the container using regression and geometric approaches. Classifying the content type and level using only audio achieves a weighted average F1-score up to 81% and 97%, respectively. Estimating the container capacity with vision-only approaches and estimating the filling mass with audio-visual multi-stage approaches reach up to 65% weighted average capacity and mass scores. These results show that there is still room for improvement on the design of new methods. These new methods can be ranked and compared on the individual leaderboards provided by our open framework
In situ interface engineering for probing the limit of quantum dot photovoltaic devices.
Quantum dot (QD) photovoltaic devices are attractive for their low-cost synthesis, tunable band gap and potentially high power conversion efficiency (PCE). However, the experimentally achieved efficiency to date remains far from ideal. Here, we report an in-situ fabrication and investigation of single TiO2-nanowire/CdSe-QD heterojunction solar cell (QDHSC) using a custom-designed photoelectric transmission electron microscope (TEM) holder. A mobile counter electrode is used to precisely tune the interface area for in situ photoelectrical measurements, which reveals a strong interface area dependent PCE. Theoretical simulations show that the simplified single nanowire solar cell structure can minimize the interface area and associated charge scattering to enable an efficient charge collection. Additionally, the optical antenna effect of nanowire-based QDHSCs can further enhance the absorption and boost the PCE. This study establishes a robust 'nanolab' platform in a TEM for in situ photoelectrical studies and provides valuable insight into the interfacial effects in nanoscale solar cells
- …