10,134 research outputs found
Some Remarks on the Model Theory of Epistemic Plausibility Models
Classical logics of knowledge and belief are usually interpreted on Kripke
models, for which a mathematically well-developed model theory is available.
However, such models are inadequate to capture dynamic phenomena. Therefore,
epistemic plausibility models have been introduced. Because these are much
richer structures than Kripke models, they do not straightforwardly inherit the
model-theoretical results of modal logic. Therefore, while epistemic
plausibility structures are well-suited for modeling purposes, an extensive
investigation of their model theory has been lacking so far. The aim of the
present paper is to fill exactly this gap, by initiating a systematic
exploration of the model theory of epistemic plausibility models. Like in
'ordinary' modal logic, the focus will be on the notion of bisimulation. We
define various notions of bisimulations (parametrized by a language L) and show
that L-bisimilarity implies L-equivalence. We prove a Hennesy-Milner type
result, and also two undefinability results. However, our main point is a
negative one, viz. that bisimulations cannot straightforwardly be generalized
to epistemic plausibility models if conditional belief is taken into account.
We present two ways of coping with this issue: (i) adding a modality to the
language, and (ii) putting extra constraints on the models. Finally, we make
some remarks about the interaction between bisimulation and dynamic model
changes.Comment: 19 pages, 3 figure
Near-field properties of plasmonic nanostructures with high aspect ratio
Using the Green's dyad technique based on cuboidal meshing, we compute the
electromagnetic field scattered by metal nanorods with high aspect ratio. We
investigate the effect of the meshing shape on the numerical simulations. We
observe that discretizing the object with cells with aspect ratios similar to
the object's aspect ratio improves the computations, without degrading the
convergency. We also compare our numerical simulations to finite element method
and discuss further possible improvements
Real-time information processing of environmental sensor network data using Bayesian Gaussian processes
In this article, we consider the problem faced by a sensor network operator who must infer, in real time, the value of some environmental parameter that is being monitored at discrete points in space and time by a sensor network. We describe a powerful and generic approach built upon an efficient multi-output Gaussian process that facilitates this information acquisition and processing. Our algorithm allows effective inference even with minimal domain knowledge, and we further introduce a formulation of Bayesian Monte Carlo to permit the principled management of the hyperparameters introduced by our flexible models. We demonstrate how our methods can be applied in cases where the data is delayed, intermittently missing, censored, and/or correlated. We validate our approach using data collected from three networks of weather sensors and show that it yields better inference performance than both conventional independent Gaussian processes and the Kalman filter. Finally, we show that our formalism efficiently reuses previous computations by following an online update procedure as new data sequentially arrives, and that this results in a four-fold increase in computational speed in the largest cases considered
Polarization state of the optical near-field
The polarization state of the optical electromagnetic field lying several
nanometers above complex dielectric structures reveals the intricate
light-matter interaction that occurs in this near-field zone. This information
can only be extracted from an analysis of the polarization state of the
detected light in the near-field. These polarization states can be calculated
by different numerical methods well-suited to near--field optics. In this
paper, we apply two different techniques (Localized Green Function Method and
Differential Theory of Gratings) to separate each polarisation component
associated with both electric and magnetic optical near-fields produced by
nanometer sized objects. The analysis is carried out in two stages: in the
first stage, we use a simple dipolar model to achieve insight into the physical
origin of the near-field polarization state. In the second stage, we calculate
accurate numerical field maps, simulating experimental near-field light
detection, to supplement the data produced by analytical models. We conclude
this study by demonstrating the role played by the near-field polarization in
the formation of the local density of states.Comment: 9 pages, 11 figures, accepted for publication in Phys. Rev.
Heisenberg exchange in magnetic monoxides
The superexchange intertacion in transition-metal oxides, proposed initially
by Anderson in 1950, is treated using contemporary tight-binding theory and
existing parameters. We find also a direct exchange for nearest-neighbor metal
ions, larger by a factor of order five than the superexchange. This direct
exchange arises from Vddm coupling, rather than overlap of atomic charge
densities, a small overlap exchange contribution which we also estimate. For
FeO and CoO there is also an important negative contribution, related to Stoner
ferromagnetism, from the partially filled minority-spin band which broadens
when ionic spins are aligned. The corresponding J1 and J2 parameters are
calculated for MnO, FeO, CoO, and NiO. They give good accounts of the Neel and
the Curie-Weiss temperatures, show appropriate trends, and give a reasonable
account of their volume dependences. For MnO the predicted value for the
magnetic susceptibility at the Neel temperature and the crystal distortion
arising from the antiferromagnetic transition were reasonably well given.
Application to CuO2 planes in the cuprates gives J=1220oK, compared to an
experimental 1500oK, and for LiCrO2 gives J1=4 50oK compared to an experimental
230oK.Comment: 21 pages, 1 figure, submitted to Phys. Rev. B 1/19/07. Realized
J=4V^2/U applies generally, as opposed to J=2V^2/U from one-electron theory
(1/28 revision
Central Proper-Motion Kinematics of NGC 6752
We present proper motions derived from WFPC2 imaging for stars in the core of
the peculiar globular cluster NGC 6752. The central velocity dispersion in both
components of the proper motion is 12 km/s. We discuss the implications of this
result as well as the intrinsic difficulties in making such measurements. We
also give an alternative correction for the 34-row problem in the WFPC2 CCDs.Comment: 25 pages, 7 figures, 1 table included. Accepted for publication in A
Relativistic thermodynamics of perfect fluids
The relativistic continuity equations for the extensive thermodynamic
quantities are derived based on the divergence theorem in Minkowski space
outlined by St\"uckelberg. This covariant approach leads to a relativistic
formulation of the first and second laws of thermodynamics. The internal energy
density and the pressure of a relativistic perfect fluid carry inertia, which
leads to a relativistic coupling between heat and work. The relativistic
continuity equation for the relativistic inertia is derived. The relativistic
corrections in the Euler equation and in the continuity equations for the
energy and momentum are identified. This relativistic theoretical framework
allows a rigorous derivation of the relativistic transformation laws for the
temperature, the pressure and the chemical potential based on the relativistic
transformation laws for the energy density, the entropy density, the mass
density and the number density.Comment: 62 page
- …