51 research outputs found

    Biological treatment of a synthetic dairy wastewater in a sequencing batch biofilm reactor: Statistical modeling using optimization using response surface methodology

    Get PDF
    In this study, the interactive effects of initial chemical oxygen demand (CODin), biomass concentration and aeration time on the performance of a lab-scale sequencing batch biofilm reactor (SBBR) treating a synthetic dairy wastewater were investigated. The experiments were conducted based on a central composite design (CCD) and analyzed using response surface methodology (RSM). The region of exploration for treatment of the synthetic dairy wastewater was taken as the area enclosed by the influent comical oxygen demand (CODin (1000, 3000 and 5000 mg/l)), biomass concentration (3000, 5000 and 7000 mg VSS/l) and aeration time (2, 8 and 18 h) boundaries. Two dependent parameters were measured or calculated as response. These parameters were total COD removal efficiency and sludge volume index (SVI). The maximum COD removal efficiencies (99.5%) were obtained at CODin, biomass concentration and aeration time of 5000 mg COD/l, 7000 mg VSS/l and 18 h, respectively. The present study provides valuable information about interrelations of quality and process parameters at different values of the operating variables

    Performance of an activated sludge followed by membrane process (AS-MP) treating simulated industrial wastewaters: effects of operating factors and feed characteristics

    Get PDF
    Abstract The main aim of the present study is to determine the optimum operating conditions for different feed compositions with less irreversible membrane fouling in an activated sludge followed by membrane process (AS-MP). In this regard, three different wastewaters with different BOD5/COD ratios (0.83 for soft drink, 0.63 for pineapple fruit juice and 0.36 for amoxicillin) as an index of biodegradability were selected. The AS-MP system was operated with biomass concentration of 7000–8000 mg/l and different hydraulic retention times (HRTs) in the range of 4–20 h. The optimal HRT was decreased as BOD5/COD ratio was increased. In order to investigate fouling behavior of membranes in the AS-MP, a commercial polyvinylidene fluoride (PVDF) microfiltration (MF) membrane and high-performance synthetic ZnFe2O4/SiO2 embedded polyether sulfone (PES) ultrafiltration (UF) membrane were applied. As a result, the UF membrane indicated the highest flux recovery ratio (FRR) for pineapple fruit juice wastewater relative to the other wastewaters. Soft drink wastewater had the maximum permeability and FRR for MF membrane due to low turbidity of the feed and low interaction with MF membrane composition, whereas this wastewater showed a lower permeability and FRR in the UF membrane, implying an effective interaction between the residual soluble microbial products and the UF membrane composition. Both membranes showed almost the same performance for amoxicillin wastewater

    Current progress on removal of recalcitrance coloured particles from anaerobically treated effluent using coagulation–flocculation

    Get PDF
    The palm oil industry is the most important agro industries in Malaysia and most of the mills adopt anaerobic digestion as their primary treatment for palm oil mill effluent (POME). Due to the public concern, decolourisation of anaerobically treated POME (AnPOME) is becoming a great concern. Presence of recalcitrant-coloured particles hinders biological processes and coagulation–flocculation may able to remove these coloured particles. Several types of inorganic and polymers-based coagulant/flocculant aids for coagulation–flocculation of AnPOME have been reviewed. Researchers are currently interested in using natural coagulant and flocculant aids. Modification of the properties of natural coagulant and flocculant aids enhanced coagulation–flocculation performance. Modelling and optimization of the coagulation–flocculation process have also been reviewed. Chemical sludge has the potential for plant growth that can be evaluated through pot trials and phytotoxicity test

    Ultrasound-induced settleability and membrane filterability of activated sludge treating milk processing wastewater

    No full text
    Abstract In practice, established operation of activated sludge treatment system with high biomass concentration is restricted because of difficulty in settling the sludge in clarifiers. Membrane bioreactor is a modified form of activated sludge, and despite the superior advantages, its widespread application is restricted by the membrane fouling. Therefore, in this research, to improve the sludge sedimentation at high biomass concentration in the activated sludge system, high-frequency ultrasound (1.7 MHz) was exerted in clarifier of activated sludge system and its performance was compared with a bioreactor followed by an antifouling ultrafiltration membrane. The antifouling ability of NH2-functionalized multiwall carbon nanotubes (NH2-MWCNTs)-modified nanocomposite UF membrane during filtration of mixed liquor-activated sludge was investigated. Hydraulic retention time (HRT) (8–44 h) and mixed liquor suspended solids (MLSS) (6000–14,000 mg/L) were chosen as the operating variables to analyze the process. The biological process showed high COD removal efficiency throughout the experiments (> 96%). The membrane and high-frequency ultrasound had no effect on the system performance in terms of COD, TKN, TN, TP removal. However, the HRT and MLSS indicated an increasing impact on flux. The effect of ultrasound on the sludge properties, i.e., sludge volume index, sludge settling velocity and height of sludge at high MLSS concentration (14,000 mg/L), was not considerable. It was concluded at MLSS of below 10,000 mg/L, about 40% water recovery was obtained. As a result, activated sludge equipped with ultrasound showed a promising performance; however, its industrial development needs further examinations to attain the design criteria. Graphical Abstrac

    Palm oil mill effluent digestion in an up-flow anaerobic sludge fixed film bioreactor

    No full text
    Theeffectoforganic loadingrate (OLR) providedby hydraulic retention time(HRT) and influent chemical oxygen demand (CODin) on the performance of an up-flow anaerobic sludge fixed film (UASFF) bioreactor treating palm oil mill effluent (POME) was studied. Anaerobic digestion of POME was modeled and analyzed with two variables i.e. HRT and CODin. Experiments were conducted based on a general factorial design and analyzed using response surface methodology (RSM). The region of exploration for digestion of POME was taken as the area enclosed by HRT (1 to 6 days) and CODin (5260 to 34725 mg/L) boundaries. A simultaneous increase of the variables determined a decrease of COD removal efficiency, SRT and SRF and an increase of COD removal rate, VFA/Alk., CO2 fraction in biogas, methane production rate. The best COD removal rate for POME treatment in an anaerobic hybrid reactor has obtained at an OLR of 17.6 g COD/l.d while it was at 26.21 g COD/l.d (Corresponds to CODin of 26210 mg COD/l and HRT of 1 day) in the present study. Minimum and maximum SRT values obtained were 16 and 1904 days at OLR of 34.73 and 0.88 g COD/l.d, respectively. The present study provides valuable information about interrelations of quality and process parameters at different values of the operating variables

    Efficient heavy metals and salts rejection using a novel modified polysulfone nanofiltration membrane

    Get PDF
    Abstract Recent research proclivity is about supplying water for drinking, urban and industrial applications which is recognized as one of the most significant challenges that threaten humanity. Giving its simplicity and high efficient yield, membrane technology has been preferred compared to other separation technologies for water and wastewater treatment. In the present research, KIT-6 (KIT: Korea Advanced Institute of Science and Technology) was functionalized by H-acid to improve hydrophilic functional groups on KIT-6 surface. Different characterization tests were performed to prove the insertion of H-acid on KIT-6 (H-KIT-6), e.g., FT-IR, XRD, zeta potential and FESEM analysis. Also, the effects of different loading of KIT-6 and H-KIT-6 on the morphology, characteristics and performance of Polysulfone (PSf) nanofiltration (NF) membranes were investigated. The maximum pure water flux (30.2 kg/m2 h), the lowest irreversible fouling ratio (3.96%) and the highest flux recovery ratio (96.04%) were obtained for the membrane embedded with 0.1 wt.% H-KIT-6 (optimum membrane). Also, the performance of the synthesized membranes was evaluated by rejection of four different salts (K2SO4, MgSO4, KCl and NaCl) and heavy metal ions (As3+ and Hg2+). The NF membrane embedded with 0.1 wt.% H-KIT-6 also presented the highest rejection of different salts and heavy metal ions (As3+ = 99.85% and Hg2+  = 99.27%) compared to the others. Finally, the performance of the optimum membrane to treat a real case of Gachsaran brackish water was assessed. As a result, by applying the optimum membrane, 565 mg/l, 28 mg/l and 27 mg/l of Ca2+, SO42− and Mg2+ were rejected, respectively
    • …
    corecore