170 research outputs found

    Perancangan Sistem Pendukung Keputusan untuk Memilih Jurusan pada Perguruan Tinggi Negeri

    Full text link
    This research aims to design a Decision Support System (DSS) to choose a major in public universities. The system can be used asr consultation tool for prospective students in determining the choice of majors and colleges that match their interests and academic abilities. The input data used are interest test results and academic ability test then the data will be processed using Case Based Reasoning (CBR) to match the psychology and a passing grade score in appropriate department at public universities. This system is designed using  the Unified Modelling Language (UML) design model, the PHP programming language with laravel framework, and MySQL as the database. Results from this study is an application that can be used prospective students or class XII students in SMA / SMK to consult in determining by of majors in higher education

    Hepatic safety and tolerability of cipargamin (KAE609), in adult patients with Plasmodium falciparum malaria: a randomized, phase II, controlled, dose-escalation trial in sub-Saharan Africa

    Full text link
    Background The novel anti-malarial cipargamin (KAE609) has potent, rapid activity against Plasmodium falciparum. Transient asymptomatic liver function test elevations were previously observed in cipargamin-treated subjects in two trials: one in malaria patients in Asia and one in volunteers with experimentally induced malaria. In this study, the hepatic safety of cipargamin given as single doses of 10 to 150 mg and 10 to 50 mg once daily for 3 days was assessed. Efficacy results, frequency of treatment-emerging mutations in the atp4 gene and pharmacokinetics have been published elsewhere. Further, the R561H mutation in the k13 gene, which confers artemisinin-resistance, was associated with delayed parasite clearance following treatment with artemether–lumefantrine in Rwanda in this study. This was also the first study with cipargamin to be conducted in patients in sub-Saharan Africa. Methods This was a Phase II, multicentre, randomized, open-label, dose-escalation trial in adults with uncomplicated falciparum malaria in five sub-Saharan countries, using artemether–lumefantrine as control. The primary endpoint was ≥ 2 Common Terminology Criteria for Adverse Events (CTCAE) Grade increase from baseline in alanine aminotransferase (ALT) or aspartate transaminase (AST) during the 4-week trial. Results Overall, 2/135 patients treated with cipargamin had ≥ 2 CTCAE Grade increases from baseline in ALT or AST compared to 2/51 artemether–lumefantrine patients, with no significant difference between any cipargamin treatment group and the control group. Cipargamin exposure was comparable to or higher than those in previous studies. Hepatic adverse events and general safety and tolerability were similar for all cipargamin doses and artemether–lumefantrine. Cipargamin was well tolerated with no safety concerns. Conclusions This active-controlled, dose escalation study was a detailed assessment of the hepatic safety of cipargamin, across a wide range of doses, in patients with uncomplicated falciparum malaria. Comparison with previous cipargamin trials requires caution as no clear conclusion can be drawn as to whether hepatic safety and potential immunity to malaria would differ with ethnicity, patient age and or geography. Previous concerns regarding hepatic safety may have been confounded by factors including malaria itself, whether natural or experimental infection, and should not limit the further development of cipargamin

    Changing antimalarial drug resistance patterns identified by surveillance at three sites in Uganda.

    Get PDF
    : We assessed Plasmodium falciparum drug resistance markers in parasites collected in 2012, 2013, and 2015 at 3 sites in Uganda. The prevalence and frequency of parasites with mutations in putative transporters previously associated with resistance to aminoquinolines, but increased sensitivity to lumefantrine (pfcrt 76T; pfmdr1 86Y and 1246Y), decreased markedly at all sites. Antifolate resistance mutations were common, with apparent emergence of mutations (pfdhfr 164L; pfdhps 581G) associated with high-level resistance. K13 mutations linked to artemisinin resistance were uncommon and did not increase over time. Changing malaria treatment practices have been accompanied by profound changes in markers of resistance.<br/

    Estimating malaria parasite prevalence from community surveys in Uganda: a comparison of microscopy, rapid diagnostic tests and polymerase chain reaction.

    Get PDF
    BACKGROUND: Household surveys are important tools for monitoring the malaria disease burden and measuring impact of malaria control interventions with parasite prevalence as the primary metric. However, estimates of parasite prevalence are dependent on a number of factors including the method used to detect parasites, age of the population sampled, and level of immunity. To better understand the influence of diagnostics, age, and endemicity on estimates of parasite prevalence and how these change over time, community-based surveys were performed for two consecutive years in three settings and the sensitivities of microscopy and immunochromatographic rapid diagnostic tests (RDTs) were assessed, considering polymerase chain reaction (PCR) as the gold standard. METHODS: Surveys were conducted over the same two-month period in 2012 and 2013 in each of three sub-counties in Uganda: Nagongera in Tororo District (January-February), Walukuba in Jinja District (March-April), and Kihihi in Kanungu District (May-June). In each sub-county, 200 households were randomly enrolled and a household questionnaire capturing information on demographics, use of malaria prevention methods, and proxy indicators of wealth was administered to the head of the household. Finger-prick blood samples were obtained for RDTs, measurement of hemoglobin, thick and thin blood smears, and to store samples on filter paper. RESULTS: A total of 1200 households were surveyed and 4433 participants were included in the analysis. Compared to PCR, the sensitivity of microscopy was low (65.3% in Nagongera, 49.6% in Walukuba and 40.9% in Kihihi) and decreased with increasing age. The specificity of microscopy was over 98% at all sites and did not vary with age or year. Relative differences in parasite prevalence across different age groups, study sites, and years were similar for microscopy and PCR. The sensitivity of RDTs was similar across the three sites (range 77.2-82.8%), was consistently higher than microscopy (p < 0.001 for all pairwise comparisons), and decreased with increasing age. The specificity of RDTs was lower than microscopy (76.3% in Nagongera, 86.3% in Walukuba, and 83.5% in Kihihi) and varied significantly by year and age. Relative differences in parasite prevalence across age groups and study years differed for RDTs compared to microscopy and PCR. CONCLUSION: Malaria prevalence estimates varied with diagnostic test, age, and transmission intensity. It is important to consider the effects of these parameters when designing and interpreting community-based surveys

    Artemether-Lumefantrine versus Dihydroartemisinin-Piperaquine for Treating Uncomplicated Malaria: A Randomized Trial to Guide Policy in Uganda

    Get PDF
    BACKGROUND: Uganda recently adopted artemether-lumefantrine (AL) as the recommended first-line treatment for uncomplicated malaria. However, AL has several limitations, including a twice-daily dosing regimen, recommendation for administration with fatty food, and a high risk of reinfection soon after therapy in high transmission areas. Dihydroartemisinin-piperaquine (DP) is a new alternative artemisinin-based combination therapy that is dosed once daily and has a long post-treatment prophylactic effect. We compared the efficacy and safety of AL with DP in Kanungu, an area of moderate malaria transmission. METHODOLOGY/PRINCIPAL FINDINGS: Patients aged 6 months to 10 years with uncomplicated falciparum malaria were randomized to therapy and followed for 42 days. Genotyping was used to distinguish recrudescence from new infection. Of 414 patients enrolled, 408 completed follow-up. Compared to patients treated with artemether-lumefantrine, patients treated with dihydroartemisinin-piperaquine had a significantly lower risk of recurrent parasitaemia (33.2% vs. 12.2%; risk difference = 20.9%, 95% CI 13.0-28.8%) but no statistically significant difference in the risk of treatment failure due to recrudescence (5.8% vs. 2.0%; risk difference = 3.8%, 95% CI -0.2-7.8%). Patients treated with dihydroartemisinin-piperaquine also had a lower risk of developing gametocytaemia after therapy (4.2% vs. 10.6%, p = 0.01). Both drugs were safe and well tolerated. CONCLUSIONS/SIGNIFICANCE: DP is highly efficacious, and operationally preferable to AL because of a less intensive dosing schedule and requirements. Dihydroartemisinin-piperaquine should be considered for a role in the antimalarial treatment policy of Uganda. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN75606663

    Different methodological approaches to the assessment of in vivo efficacy of three artemisinin-based combination antimalarial treatments for the treatment of uncomplicated falciparum malaria in African children.

    Get PDF
    BACKGROUND: Use of different methods for assessing the efficacy of artemisinin-based combination antimalarial treatments (ACTs) will result in different estimates being reported, with implications for changes in treatment policy. METHODS: Data from different in vivo studies of ACT treatment of uncomplicated falciparum malaria were combined in a single database. Efficacy at day 28 corrected by PCR genotyping was estimated using four methods. In the first two methods, failure rates were calculated as proportions with either (1a) reinfections excluded from the analysis (standard WHO per-protocol analysis) or (1b) reinfections considered as treatment successes. In the second two methods, failure rates were estimated using the Kaplan-Meier product limit formula using either (2a) WHO (2001) definitions of failure, or (2b) failure defined using parasitological criteria only. RESULTS: Data analysed represented 2926 patients from 17 studies in nine African countries. Three ACTs were studied: artesunate-amodiaquine (AS+AQ, N = 1702), artesunate-sulphadoxine-pyrimethamine (AS+SP, N = 706) and artemether-lumefantrine (AL, N = 518).Using method (1a), the day 28 failure rates ranged from 0% to 39.3% for AS+AQ treatment, from 1.0% to 33.3% for AS+SP treatment and from 0% to 3.3% for AL treatment. The median [range] difference in point estimates between method 1a (reference) and the others were: (i) method 1b = 1.3% [0 to 24.8], (ii) method 2a = 1.1% [0 to 21.5], and (iii) method 2b = 0% [-38 to 19.3].The standard per-protocol method (1a) tended to overestimate the risk of failure when compared to alternative methods using the same endpoint definitions (methods 1b and 2a). It either overestimated or underestimated the risk when endpoints based on parasitological rather than clinical criteria were applied. The standard method was also associated with a 34% reduction in the number of patients evaluated compared to the number of patients enrolled. Only 2% of the sample size was lost when failures were classified on the first day of parasite recurrence and survival analytical methods were used. CONCLUSION: The primary purpose of an in vivo study should be to provide a precise estimate of the risk of antimalarial treatment failure due to drug resistance. Use of survival analysis is the most appropriate way to estimate failure rates with parasitological recurrence classified as treatment failure on the day it occurs

    A comparative, randomized clinical trial of artemisinin/naphtoquine twice daily one day versus artemether/lumefantrine six doses regimen in children and adults with uncomplicated falciparum malaria in CĂ´te d'Ivoire

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drug resistance in <it>Plasmodium falciparum </it>poses a major threat to malaria control. Combination anti-malarial therapy, including artemisinins, has been advocated to improve efficacy and limit the spread of resistance. The fixed combination of oral artemether-lumefantrine (AL) is highly effective and well-tolerated. Artemisinin/naphtoquine (AN) is a fixed-dose ACT that has recently become available in Africa.</p> <p>The objectives of the study were to compare the efficacy and safety of AN and AL for the treatment of uncomplicated <it>falciparum </it>malaria in a high transmission-intensity site in Ivory Coast.</p> <p>Methods</p> <p>We enrolled 122 participants aged 6 months or more with uncomplicated <it>falciparum </it>malaria. Participants were randomized to receive either artemisinin/naphtoquine or artemether/lumefantrine with variable dose according to their weight. Primary endpoints were the risks of treatment failure within 28 days, either unadjusted or adjusted by genotyping to distinguish recrudescence from new infection.</p> <p>Results</p> <p>Among 125 participants enrolled, 123 (98.4%) completed follow-up. Clinical evaluation of the 123 participants showed that cumulative PCR-uncorrected cure rate on day 28 was 100% for artemisinin/naphtoquine and 98.4% for artemether/lumefantrine. Both artemisinin-based combinations effected rapid fever and parasite clearance.</p> <p>Interpretation</p> <p>These data suggest that Arco<sup>® </sup>could prove to be suitable for use as combination antimalarial therapy. Meanwhile, pharmacokinetic studies and further efficacy assessment should be conducted before its widespread use can be supported.</p

    THE REAL McCOIL: A method for the concurrent estimation of the complexity of infection and SNP allele frequency for malaria parasites.

    Get PDF
    As many malaria-endemic countries move towards elimination of Plasmodium falciparum, the most virulent human malaria parasite, effective tools for monitoring malaria epidemiology are urgent priorities. P. falciparum population genetic approaches offer promising tools for understanding transmission and spread of the disease, but a high prevalence of multi-clone or polygenomic infections can render estimation of even the most basic parameters, such as allele frequencies, challenging. A previous method, COIL, was developed to estimate complexity of infection (COI) from single nucleotide polymorphism (SNP) data, but relies on monogenomic infections to estimate allele frequencies or requires external allele frequency data which may not available. Estimates limited to monogenomic infections may not be representative, however, and when the average COI is high, they can be difficult or impossible to obtain. Therefore, we developed THE REAL McCOIL, Turning HEterozygous SNP data into Robust Estimates of ALelle frequency, via Markov chain Monte Carlo, and Complexity Of Infection using Likelihood, to incorporate polygenomic samples and simultaneously estimate allele frequency and COI. This approach was tested via simulations then applied to SNP data from cross-sectional surveys performed in three Ugandan sites with varying malaria transmission. We show that THE REAL McCOIL consistently outperforms COIL on simulated data, particularly when most infections are polygenomic. Using field data we show that, unlike with COIL, we can distinguish epidemiologically relevant differences in COI between and within these sites. Surprisingly, for example, we estimated high average COI in a peri-urban subregion with lower transmission intensity, suggesting that many of these cases were imported from surrounding regions with higher transmission intensity. THE REAL McCOIL therefore provides a robust tool for understanding the molecular epidemiology of malaria across transmission settings

    Monitoring antimalarial safety and tolerability in clinical trials: A case study from Uganda

    Get PDF
    BACKGROUND: New antimalarial regimens, including artemisinin-based combination therapies (ACTs), have been adopted widely as first-line treatment for uncomplicated malaria. Although these drugs appear to be safe and well-tolerated, experience with their use in Africa is limited and continued assessment of safety is a priority. However, no standardized guidelines for evaluating drug safety and tolerability in malaria studies exist. A system for monitoring adverse events in antimalarial trials conducted in Uganda was developed. Here the reporting system is described, and difficulties faced in analysing and interpreting the safety results are illustrated, using data from the trials. CASE DESCRIPTION: Between 2002 and 2007, eleven randomized, controlled clinical trials were conducted to compare the efficacy, safety, and tolerability of different antimalarial regimens for treatment of uncomplicated malaria in Uganda. The approach to adverse event monitoring was similar in all studies. A total of 5,614 treatments were evaluated in 4,876 patients. Differences in baseline characteristics and patterns of adverse event reporting were noted between the sites, which limited the ability to pool and analyse data. Clinical failure following antimalarial treatment confounded associations between treatment and adverse events that were also common symptoms of malaria, particularly in areas of lower transmission intensity. DISCUSSION AND EVALUATION: Despite prospectively evaluating for adverse events, limitations in the monitoring system were identified. New standardized guidelines for monitoring safety and tolerability in antimalarial trials are needed, which should address how to detect events of greatest importance, including serious events, those with a causal relationship to the treatment, those which impact on adherence, and events not previously reported. CONCLUSION: Although the World Health Organization has supported the development of pharmacovigilance systems in African countries deploying ACTs, additional guidance on adverse events monitoring in antimalarial clinical trials is needed, similar to the standardized recommendations available for assessment of drug efficacy

    Persistence of Plasmodium falciparum parasitemia after artemisinin combination therapy: evidence from a randomized trial in Uganda

    Get PDF
    Artemisinin resistance is rapidly spreading in Southeast Asia. The efficacy of artemisinin-combination therapy (ACT) continues to be excellent across Africa. We performed parasite transcriptional profiling and genotyping on samples from an antimalarial treatment trial in Uganda. We used qRT-PCR and genotyping to characterize residual circulating parasite populations after treatment with either ACT or ACT-primaquine. Transcripts suggestive of circulating ring stage parasites were present after treatment at a prevalence of >25% until at least 14 days post initiation of treatment. Greater than 98% of all ring stage parasites were cleared within the first 3 days, but subsequently persisted at low concentrations until day 14 after treatment. Genotyping demonstrated a significant decrease in multiplicity of infection within the first 2 days in both ACT and ACT-primaquine arms. However, multiple clone infections persisted until day 14 post treatment. Our data suggest the presence of genetically diverse persisting parasite populations after ACT treatment. Although we did not demonstrate clinical treatment failures after ACT and the viability and transmissibility of persisting ring stage parasites remain to be shown, these findings are of relevance for the interpretation of parasite clearance transmission dynamics and for monitoring drug effects in Plasmodium falciparum parasites
    • …
    corecore