4,927 research outputs found
Fast Algorithm for Partial Covers in Words
A factor of a word is a cover of if every position in lies
within some occurrence of in . A word covered by thus
generalizes the idea of a repetition, that is, a word composed of exact
concatenations of . In this article we introduce a new notion of
-partial cover, which can be viewed as a relaxed variant of cover, that
is, a factor covering at least positions in . We develop a data
structure of size (where ) that can be constructed in time which we apply to compute all shortest -partial covers for a
given . We also employ it for an -time algorithm computing
a shortest -partial cover for each
Coulomb Blockade and Kondo Effect in a Quantum Hall Antidot
We propose a general capacitive model for an antidot, which has two localized
edge states with different spins in the quantum Hall regime. The capacitive
coupling of localized excess charges, which are generated around the antidot
due to magnetic flux quantization, and their effective spin fluctuation can
result in Coulomb blockade, h/(2e) Aharonov-Bohm oscillations, and the Kondo
effect. The resultant conductance is in qualitative agreement with recent
experimental data.Comment: 3 figures, to appear in Physical Review Letter
Magnetic Quantum Dot: A Magnetic Transmission Barrier and Resonator
We study the ballistic edge-channel transport in quantum wires with a
magnetic quantum dot, which is formed by two different magnetic fields B^* and
B_0 inside and outside the dot, respectively. We find that the electron states
located near the dot and the scattering of edge channels by the dot strongly
depend on whether B^* is parallel or antiparallel to B_0. For parallel fields,
two-terminal conductance as a function of channel energy is quantized except
for resonances, while, for antiparallel fields, it is not quantized and all
channels can be completely reflected in some energy ranges. All these features
are attributed to the characteristic magnetic confinements caused by nonuniform
fields.Comment: 4 pages, 4 figures, to be published in Physical Review Letter
Aging and loss decision making: increased risk aversion and decreased use of maximizing information, with correlated rationality and value maximization
Frontiers in Human Neuroscience9May1-1
A new limit of T-violating transverse muon polarization in the decay
A search for T-violating transverse muon polarization () in the
decay was performed using kaon decays at rest. A
new improved value, , was
obtained giving an upper limit, . The T-violation parameter
was determined to be Im giving
an upper limit, Im.Comment: 5 pages, 4 figure
Delocalization and conductance quantization in one-dimensional systems
We investigate the delocalization and conductance quantization in finite
one-dimensional chains with only off-diagonal disorder coupled to leads. It is
shown that the appearence of delocalized states at the middle of the band under
correlated disorder is strongly dependent upon the even-odd parity of the
number of sites in the system. In samples with inversion symmetry the
conductance equals for odd samples, and is smaller for even parity.
This result suggests that this even-odd behaviour found previously in the
presence of electron correlations may be unrelated to charging effects in the
sample.Comment: submitted to PR
Traceability for Mutation Analysis in Model Transformation
International audienceModel transformation can't be directly tested using program techniques. Those have to be adapted to model characteristics. In this paper we focus on one test technique: mutation analysis. This technique aims to qualify a test data set by analyzing the execution results of intentionally faulty program versions. If the degree of qualification is not satisfactory, the test data set has to be improved. In the context of model, this step is currently relatively fastidious and manually performed. We propose an approach based on traceability mechanisms in order to ease the test model set improvement in the mutation analysis process. We illustrate with a benchmark the quick automatic identification of the input model to change. A new model is then created in order to raise the quality of the test data set
Towards unified understanding of conductance of stretched monatomic contacts
When monatomic contacts are stretched, their conductance behaves in
qualitatively different ways depending on their constituent atomic elements.
Under a single assumption of resonance formation, we show that various
conductance behavior can be understood in a unified way in terms of the
response of the resonance to stretching. This analysis clarifies the crucial
roles played by the number of valence electrons, charge neutrality, and orbital
shapes.Comment: 2 figure
- …