87,540 research outputs found
A Phone Learning Model for Enhancing Productivity of Visually Impaired Civil Servants
Phone-based learning in civil service is the use of voice technologies to deliver learning and capacity building training services to
government employees. The Internet revolution and advancement in Information and Communications Technology (ICT) have given rise
to online and remote staff training for the purpose of enhancing workers productivity. The need for civil servants in Nigeria to develop
capacity that will enhance knowledge is a key requirement to having competitive advantage in the work place. Existing online learning
platforms (such as web-based learning, mobile learning, etc) did not consider the plight of the visually impaired. These platforms provide
graphical interfaces that require sight to access. The visually impaired civil servants require auditory access to functionalities that exist in
learning management system on the Internet. Thus a gap exist between the able-bodied and visually impaired civil servants on
accessibility to e-learning platform. The objective of this paper is to provide a personalized telephone learning model and a prototype
application that will enhance the productivity of the visually impaired workers in Government establishments in Nigeria. The model was
designed using Unified Modeling Language (UML) diagram. The prototype application was implemented and evaluated. With the
proposed model and application, the visually and mobility impaired worker are able to participate in routine staff training and
consequently enhances their productivity just like their able-bodied counterparts. The prototype application also serves as an alternative
training platform for the able-bodied workers. Future research direction for this study will include biometric authentication of learners
accessing the applicatio
Concurrence of superposition
The bounds on concurrence of the superposition state in terms of those of the
states being superposed are studied in this paper. The bounds on concurrence
are quite different from those on the entanglement measure based on von Neumann
entropy (Phys. Rev. Lett. 97, 100502 (2006)). In particular, a nonzero lower
bound can be provided if the states being superposed are properly constrained.Comment: 4 page
Astrophysics and cosmology with a deci-hertz gravitational-wave detector: TianGO
We present the astrophysical science case for a space-based, deci-Hz gravitational-wave (GW) detector. We particularly highlight an ability in inferring a source's sky location, both when combined with a network of ground-based detectors to form a long triangulation baseline, and by itself for the early warning of merger events. Such an accurate location measurement is the key for using GW signals as standard sirens for constraining the Hubble constant. This kind of detector also opens up the possibility of testing type Ia supernovae progenitor hypotheses by constraining the merger rates of white dwarf binaries with both super- and sub-Chandrasekhar masses separately. We will discuss other scientific outcomes that can be delivered, including the precise determination of black hole spins, the constraint of structure formation in the early Universe, and the search for intermediate-mass black holes
Analogue Casimir Radiation using an Optical Para- metric Oscillator
We establish an explicit analogy between the dynamical Casimir effect and the
photon emission of a thin non-linear crystal pumped inside a cavity. This
allows us to propose a system based on a type-I optical parametric oscillator
(OPO) to simulate a cavity oscillating in vacuum at optical frequencies. The
resulting photon flux is expected to be more easily detectable than with a
mechanical excitation of the mirrors. We conclude by comparing different
theoretical predictions and suggest that our experimental proposal could help
discriminate between them.Comment: 7 pages, 2 figures, epl2 stylefile necessary to compil
Perturbation theory of von Neumann Entropy
In quantum information theory, von Neumann entropy plays an important role.
The entropies can be obtained analytically only for a few states. In continuous
variable system, even evaluating entropy numerically is not an easy task since
the dimension is infinite. We develop the perturbation theory systematically
for calculating von Neumann entropy of non-degenerate systems as well as
degenerate systems. The result turns out to be a practical way of the expansion
calculation of von Neumann entropy.Comment: 7 page
Perturbational approach to the quantum capacity of additive Gaussian quantum channel
For a quantum channel with additive Gaussian quantum noise, at the large
input energy side, we prove that the one shot capacity is achieved by the
thermal noise state for all Gaussian state inputs, it is also true for
non-Gaussian input in the sense of first order perturbation. For a general case
of copies input, we show that up to first order perturbation, any
non-Gaussian perturbation to the product thermal state input has a less quantum
information transmission rate when the input energy tend to infinitive.Comment: 5 page
- …