125 research outputs found

    Vegetation indices for mapping canopy foliar nitrogen in a mixed temperate forest

    Get PDF
    Hyperspectral remote sensing serves as an effective tool for estimating foliar nitrogen using a variety of techniques. Vegetation indices (VIs) are a simple means of retrieving foliar nitrogen. Despite their popularity, few studies have been conducted to examine the utility of VIs for mapping canopy foliar nitrogen in a mixed forest context. In this study, we assessed the performance of 32 vegetation indices derived from HySpex airborne hyperspectral images for estimating canopy mass-based foliar nitrogen concentration (%N) in the Bavarian Forest National Park. The partial least squares regression (PLSR) was performed for comparison. These vegetation indices were classified into three categories that are mostly correlated to nitrogen, chlorophyll, and structural properties such as leaf area index (LAI). %N was destructively measured in 26 broadleaf, needle leaf, and mixed stand plots to represent the different species and canopy structure. The canopy foliar %N is defined as the plot-level mean foliar %N of all species weighted by species canopy foliar mass fraction. Our results showed that the variance of canopy foliar %N is mainly explained by functional type and species composition. The normalized difference nitrogen index (NDNI) produced the most accurate estimation of %N (R2CV = 0.79, RMSECV = 0.26). A comparable estimation of %N was obtained by the chlorophyll index Boochs2 (R2CV = 0.76, RMSECV = 0.27). In addition, the mean NIR reflectance (800-850 nm), representing canopy structural properties, also achieved a good accuracy in %N estimation (R2CV = 0.73, RMSECV = 0.30). The PLSR model provided a less accurate estimation of %N (R2CV = 0.69, RMSECV = 0.32). We argue that the good performance of all three categories of vegetation indices in %N estimation can be attributed to the synergy among plant traits (i.e., canopy structure, leaf chemical and optical properties) while these traits may converge across plant species for evolutionary reasons

    Applied Machine Learning for the Prediction of Growth of Abdominal Aortic Aneurysm in Humans

    Get PDF
    Objective: Accurate prediction of abdominal aortic aneurysm (AAA) growth in an individual can allow personalised stratification of surveillance intervals and better inform the timing for surgery. The authors recently described the novel significant association between flow mediated dilatation (FMD) and future AAA growth. The feasibility of predicting future AAA growth was explored in individual patients using a set of benchmark machine learning techniques. Methods: The Oxford Abdominal Aortic Aneurysm Study (OxAAA) prospectively recruited AAA patients undergoing the routine NHS management pathway. In addition to the AAA diameter, FMD was systemically measured in these patients. A benchmark machine learning technique (non-linear Kernel support vector regression) was applied to predict future AAA growth in individual patients, using their baseline FMD and AAA diameter as input variables. Results: Prospective growth data were recorded at 12 months (360 ± 49 days) in 94 patients. Of these, growth data were further recorded at 24 months (718 ± 81 days) in 79 patients. The average growth in AAA diameter was 3.4% at 12 months, and 2.8% per year at 24 months. The algorithm predicted the individual's AAA diameter to within 2 mm error in 85% and 71% of patients at 12 and 24 months. Conclusions: The data highlight the utility of FMD as a biomarker for AAA and the value of machine learning techniques for AAA research in the new era of precision medicine

    Eddy transport of organic carbon and nutrients from the Chukchi Shelf : impact on the upper halocline of the western Arctic Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C05011, doi:10.1029/2006JC003899.In September 2004 a detailed physical and chemical survey was conducted on an anticyclonic, cold-core eddy located seaward of the Chukchi Shelf in the western Arctic Ocean. The eddy had a diameter of ∼16 km and was centered at a depth of ∼160 m between the 1000 and 1500 m isobaths over the continental slope. The water in the core of the eddy (total volume of 25 km3) was of Pacific origin, and contained elevated concentrations of nutrients, organic carbon, and suspended particles. The feature, which likely formed from the boundary current along the edge of the Chukchi Shelf, provides a mechanism for transport of carbon, oxygen, and nutrients directly into the upper halocline of the Canada Basin. Nutrient concentrations in the eddy core were elevated compared to waters of similar density in the deep Canada Basin: silicate (+20 μmol L−1), nitrate (+5 μmol L−1), and phosphate (+0.4 μmol L−1). Organic carbon in the eddy core was also elevated: POC (+3.8 μmol L−1) and DOC (+11 μmol L−1). From these observations, the eddy contained 1.25 × 109 moles Si, 4.5 × 108 moles NO3 −, 5.5 × 107 moles PO3 −, 1.2 × 108 moles POC, and 1.9 × 109 moles DOC, all available for transport to the interior of the Canada Basin. This suggests that such eddies likely play a significant role in maintaining the nutrient maxima observed in the upper halocline. Assuming that shelf-to-basin eddy transport is the dominant renewal mechanism for waters of the upper halocline, remineralization of the excess organic carbon transported into the interior would consume 6.70 × 1010 moles of O2, or one half the total oxygen consumption anticipated arising from all export processes impacting the upper halocline.This work was supported by the National Science Foundation, and office of Naval Research; DH OPP-0124900, NB OPP-0124868, DK OPP 0124872, RP N00014-02-1-0317

    A tracer study of the Arctic Ocean's liquid freshwater export variability

    Get PDF
    We present an analysis of the variability of the liquid Arctic freshwater (FW) export, using a simulation from the Community Climate System Model Version 3 (CCSM3) that includes passive tracers for FW from different sources. It is shown that the FW exported through the western Canadian Arctic Archipelago (CAA) comes mainly from the Pacific and from North American runoff. The variability of the FW export from both of these sources is generally in phase, due to the strong influence of variations of the velocity anomaly on the CAA FW export variability. The velocity anomaly in the CAA is in turn mainly governed by variations in the large-scale atmospheric circulation (i.e., the Arctic Oscillation). In Fram Strait, the FW export is mainly composed of Eurasian runoff and FW of Pacific origin. The variability of the Fram Strait FW export is governed both by changes in the velocity and in the FW concentration, and the variability of the FW concentration from the two largest sources is not in phase. The Eurasian runoff export through Fram Strait depends strongly on the release of FW from the Eurasian shelf, which occurs during years with an anticyclonic circulation anomaly (negative Vorticity index) and takes 3 years to reach Fram Strait after leaving the shelf. In contrast, the variability of the Pacific FW export through Fram Strait is mainly controlled by changes in the Pacific FW storage in the Beaufort Gyre, with an increased export during years with a cyclonic circulation anomaly (positive Vorticity index)

    An assessment of Arctic Ocean freshwater content changes from the 1990s to the 2006-2008 period

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 58 (2011): 173-185, doi:10.1016/j.dsr.2010.12.002.Unprecedented summer-season sampling of the Arctic Ocean during the period 2006−2008 makes possible a quasi-synoptic estimate of liquid freshwater (LFW) inventories in the Arctic Ocean basins. In comparison to observations from 1992−1999, LFW content relative to a salinity of 35 in the layer from the surface to the 34 isohaline increased by 8400 ± 2000 km3 in the Arctic Ocean (water depth greater than 500m). This is close to the annual export of freshwater (liquid and solid) from the Arctic Ocean reported in the literature. Observations and a model simulation show regional variations in LFW were both due to changes in the depth of the lower halocline, often forced by regional wind-induced Ekman pumping, and a mean freshening of the water column above this depth, associated with an increased net sea ice melt and advection of increased amounts of river water from the Siberian shelves. Over the whole Arctic Ocean, changes in the observed mean salinity above the 34 isohaline dominated estimated changes in LFW content; the contribution to LFW change by bounding isohaline depth changes was less than a quarter of the salinity contribution, and non-linear effects due to both factors were negligible.This work was supported by the Co-Operative Project “The North Atlantic as Part of the Earth System: From System Comprehension to Analysis of Regional Impacts” funded by the German Federal Ministry for Education and Research (BMBF) and by the European Union Sixth Framework Programme project DAMOCLES (Developing Arctic Modelling and Observing Capabilities for Long-term Environment Studies), contract number 018509GOCE

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Early Diagnosis of Vegetation Health From High-Resolution Hyperspectral and Thermal Imagery: Lessons Learned From Empirical Relationships and Radiative Transfer Modelling

    Get PDF
    [Purpose of Review] We provide a comprehensive review of the empirical and modelling approaches used to quantify the radiation–vegetation interactions related to vegetation temperature, leaf optical properties linked to pigment absorption and chlorophyll fluorescence emission, and of their capability to monitor vegetation health. Part 1 provides an overview of the main physiological indicators (PIs) applied in remote sensing to detect alterations in plant functioning linked to vegetation diseases and decline processes. Part 2 reviews the recent advances in the development of quantitative methods to assess PI through hyperspectral and thermal images.[Recent Findings] In recent years, the availability of high-resolution hyperspectral and thermal images has increased due to the extraordinary progress made in sensor technology, including the miniaturization of advanced cameras designed for unmanned aerial vehicle (UAV) systems and lightweight aircrafts. This technological revolution has contributed to the wider use of hyperspectral imaging sensors by the scientific community and industry; it has led to better modelling and understanding of the sensitivity of different ranges of the electromagnetic spectrum to detect biophysical alterations used as early warning indicators of vegetation health.[Summary] The review deals with the capability of PIs such as vegetation temperature, chlorophyll fluorescence, photosynthetic energy downregulation and photosynthetic pigments detected through remote sensing to monitor the early responses of plants to different stressors. Various methods for the detection of PI alterations have recently been proposed and validated to monitor vegetation health. The greatest challenges for the remote sensing community today are (i) the availability of high spatial, spectral and temporal resolution image data; (ii) the empirical validation of radiation–vegetation interactions; (iii) the upscaling of physiological alterations from the leaf to the canopy, mainly in complex heterogeneous vegetation landscapes; and (iv) the temporal dynamics of the PIs and the interaction between physiological changes.The authors received funding provided by the FluorFLIGHT (GGR801) Marie Curie Fellowship, the QUERCUSAT and ESPECTRAMED projects (Spanish Ministry of Economy and Competitiveness), the Academy of Finland (grants 266152, 317387) and the European Research Council Synergy grant ERC-2013-SyG-610028 IMBALANCE-P.Peer reviewe
    corecore